Handbook of Composites from Renewable Materials, Nanocomposites :Science and Fundamentals

Publication subTitle :Science and Fundamentals

Author: Vijay Kumar Thakur   Manju Kumari Thakur   Michael R. Kessler  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9781119224457

P-ISBN(Paperback): 9781119223818

Subject: O6 Chemistry

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.1.2 Lignin and Nanolignin

1.1.3 Silica and Nanosilica

1.2 Preparation of Nanomaterials

1.2.1 Nanocellulose from Lignocellulosic Materials

1.2.1.1 Mechanical Shearing and Grinding

1.2.1.2 Steam Explosion/High-Pressure Homogenization

1.2.1.3 Chemical Methods (Acid Hydrolysis, Alkaline Treatment and Bleaching)

1.2.1.4 Ultrasonication

1.2.1.5 Other Methods

1.2.1.6 Functionalized Nanocellulose from Fibers

1.2.2 Nanolignin

1.2.2.1 Precipitation Method

1.2.2.2 Chemical Modification

1.2.2.3 Electro Spinning Followed by Surface Modification

1.2.2.4 Freeze Drying Followed by Thermal Stabilization and Carbonization

1.2.2.5 Supercritical Antisolvent Technology

1.2.2.6 Chemomechanical Methods

1.2.2.7 Nanolignin by Self-Assembly

1.2.2.8 Lignin Nanocontainers by Miniemulsion Method

1.2.2.9 Template-Mediated Synthesis

1.2.3 Nanosilica

1.2.3.1 Nanosilica Obtained from Plants

1.2.3.2 Enzymatic Crystallization of Amorphous Nanosilica

1.3 Characterization of Nanomaterials

1.3.1 Characterization of Nanocellulose

1.3.1.1 Structure and Morphology of NC

1.3.1.2 Physical Properties (Dimensions, Density, Electrical, Crystallinity, and Any Other)

1.3.1.3 Mechanical Properties

1.3.2 Characterization of Lignin Nanoparticles

1.3.2.1 Morphology of Lignin Nanoparticles

1.3.2.2 Thermal Analysis

1.3.3 Other Methods

1.3.4 Characterization of Nanosilica

1.4 Applications and Market Aspects

1.4.1 Nanocellulose

1.4.1.1 Biomedical Applications

1.4.1.2 Dielectric Materials

1.4.1.3 In Composite Manufacturing for Various Applications

1.4.1.4 Advanced Functional Materials

1.4.2 Nanolignin

1.4.3 Nanosilica

1.4.3.1 In Composites

1.4.3.2 Nanosilica in Nacre Composite

1.4.3.3 Encapsulation of Living Cells by Nanosilica

1.5 Concluding Remarks and Challenges Ahead

Acknowledgments

References

2 Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications

2.1 Introduction

2.2 Hydrogels from Renewable Resources

2.3 Hydrogel Technical Features

2.4 Nanocomposite Hydrogels

2.4.1 Polymer-Clay-Based Nanocomposite Hydrogels

2.4.2 Poly(ethylene Oxide)–Silicate Nanocomposite Hydrogels

2.4.3 Poly(acryl Amide) and Poly(vinyl Alcohol)–Silicate-Based Nanocomposite Hydrogels

2.5 Nanocomposite Hydrogels with Natural Polymers

2.6 Classifications of Hydrogels

2.7 Applications of Hydrogels as Biomaterials

2.7.1 Hydrogels for Drug Delivery Applications

2.7.2 Hydrogels for Tissue-Engineering Scaffolds

2.7.3 Hydrogels for Contact Lens

2.7.4 Hydrogels for Cell Encapsulation

2.7.5 Artificial Muscles and Nerve Regeneration

2.8 Conclusions

Acknowledgment

References

3 Preparation of Chitin-Based Nanocomposite Materials Through Gelation with Ionic Liquid

3.1 Introduction

3.2 Dissolution and Gelation of Chitin with Ionic Liquid

3.3 Fabrication of Self-Assembled Chitin Nanofibers by Regeneration from the Chitin Ion Gels

3.4 Preparation of Nanocomposite Materials from Chitin Nanofibers

3.5 Conclusion

References

4 Starch-Based Bionanocomposites

4.1 Introduction

4.2 Nanocomposites

4.3 Starch Structural Features

4.4 Starch-Based Bionanocomposites

4.4.1 Starch Silicate Nanocomposites

4.4.2 Starch/Chitosan Composites

4.4.3 Starch Cellulose Nanocomposites

4.4.4 Starch Nanocomposites with Other Nanofillers

4.5 Starch Nanocrystal, Nanoparticle, and Nanocolloid Preparation and Modification Methods

4.5.1 Starch Nanocrystals Preparation by Acid Hydrolysis Method

4.5.2 Starch Nanocrystal Modification Methods

4.5.2.1 Starch Nanocrystals Chemical Modification by Molecules with Low Molecular Weight

4.5.2.2 Modification of Starch Nanocrystals via Surface Grafting of Polymers

4.5.3 Starch Nanoparticle and Nanocolloid Preparation and Modification Methods

4.6 Nano Starch as Fillers in Other Nanocomposites

4.7 Biomedical Application

4.8 Conclusion

References

5 Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites

5.1 Nanocellulose-Based and Nanocellulose-Reinforced Nanocomposite Hydrogels

5.1.1 Gelling Performances of Nanocelluloses

5.1.2 Nanocelluloses-Reinforced Nanocomposite Hydrogels

5.2 Nanocellulose-Based Aerogels

5.2.1 Preparation and Properties of Nanocellulose Aerogels

5.2.2 Nanocellulose–Polymer Composite Aerogels

5.2.3 Nanocellulose–Inorganic Nanocomposite Aerogels

5.2.4 Nanocellulose–Nanocarbon Hybrid Aerogels

5.3 Nanocellulose-Based Biomimetic and Conductive Nanocomposite Films

5.3.1 Nanocellulose–Polymer Biomimetic Nanocomposite Films

5.3.2 Nanocellulose–Inorganic Biomimetic Nanocomposite Films

5.3.3 Nanocellulose–Nanocarbon Conductive Nanocomposite Films

5.4 Chiral Nematic Liquid Crystal and its Nanocomposites with Unique Optical Properties

5.4.1 CNC Chiral Nematic Performances

5.4.2 CNC–Polymer Photonic Nanocomposites

5.4.3 CNC–Inorganic Photonic Nanocomposites

5.4.4 CNC-Templated Chiral Nematic Nanomaterials

5.5 Spun Fibers from Nanocelluloses

5.5.1 Spinning Performances of Nanocelluloses and Properties

5.5.2 Nanocellulose–Polymer Spinning Nanocomposite Fibers

5.5.3 Nanocellulose–Nanocarbons Spinning Nanocomposite Fibers

5.6 Summary and Outlook

References

6 Investigation of Wear Characteristics of Dental Composite Reinforced with Rice Husk–Derived Nanosilica Filler Particles

6.1 Introduction

6.2 Materials and Method

6.2.1 Synthesis of Nanosilica Powder

6.2.2 Materials and Fabrication Details

6.2.3 Determination of Hardness

6.2.4 Determination of Flexural Strength

6.2.5 Determination of Wear

6.2.6 Field Emission Scanning Electron Microscope

6.3 Results and Discussion

6.3.1 Effect of Vickers Hardness on the Dental Composite Filled with Silane-Treated Nanosilica

6.3.2 Effect of Flexural Strength on the Dental Composite Filled with Silane-Treated Nanosilica

6.3.3 Steady-State Condition for Wear Characterization in Food Slurry and Acidic Medium

6.3.3.1 Effect of Chewing Load on Volumetric Wear Rate on Dental Composite

6.3.3.2 Effect of Profile Speed on Volumetric Wear Rate of Dental Composite

6.3.3.3 Effect of Chamber Temperature on Volumetric Wear Rate of Dental Composite

6.3.4 Wear Analysis of Experimental Results by Taguchi Method and ANOVA Analysis

6.3.4.1 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Food Slurry Using Taguchi and ANOVA

6.3.4.2 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Citric Acid Using Taguchi and ANOVA

6.3.5 Surface Morphology of Worn Surfaces Under Food Slurry and Citric Acid Condition

6.3.6 Confirmation Experiment of Proposed Composites

6.4 Conclusions

Acknowledgments

Nomenclature

References

7 Performance of Regenerated Cellulose Nanocomposites Fabricated via Ionic Liquid Based on Halloysites and Vermiculite

7.1 Introduction

7.1.1 Overview

7.1.2 Cellulose Structure and Properties

7.1.3 Regenerated Cellulose

7.1.4 Conventional Solvent for Cellulose

7.1.5 Dissolution of Cellulose in NMMO

7.1.6 Cellulose Dissolution in Ionic Liquid

7.1.7 Regenerated Cellulose Nanocomposites

7.1.8 Halloysites

7.1.9 Vermiculite

7.2 Experimental

7.2.1 Materials

7.2.2 Sample Preparation

7.2.2.1 The Preparation of Regenerated Cellulose via Ionic Liquid

7.2.2.2 Preparation of Regenerated Cellulose Nanocomposites via Ionic Liquids

7.2.3 Characterization of the Nanocomposites Films

7.3 Results and Discussions

7.3.1 XRD Patterns of RC Nanocomposites

7.3.2 FTIR Spectra of RC Nanocomposites

7.3.3 Mechanical Properties of RC Nanocomposites

7.3.4 Morphology Analysis of the RC Nanocomposites

7.3.4.1 Transmission Electron Micrographs Images Analysis

7.3.4.2 Scanning Electron Microscopy Images Analysis

7.3.5 Thermal Stability Analysis of RC Nanocomposites

7.3.6 Water Absorption of RC Nanocomposites

7.4 Conclusion

Acknowledgments

References

8 Preparation, Structure, Properties, and Interactions of the PVA/Cellulose Composites

8.1 PVA and Cellulose

8.1.1 Polyvinyl Alcohol

8.1.1.1 Molecular Weight and the Degree of Alcoholysis

8.1.1.2 The Advantages and Disadvantages of PVA

8.1.2 Cellulose

8.1.2.1 Structure and Chemistry of Cellulose

8.1.2.2 Source of Cellulose

8.1.2.3 The Particle Types of Cellulose

8.1.2.4 Properties of Cellulose

8.1.2.5 Application of Cellulose

8.1.3 PVA/Cellulose Composites

8.1.3.1 The Properties of PVA/Cellulose Composites

8.1.3.2 Application of PVA/Cellulose Composites

8.2 The Bulk and Surface Modification of Cellulose Particles

8.2.1 The Bulk Modification of Cellulose Particles

8.2.1.1 Complex Modification

8.2.1.2 Graft Polymerization

8.2.2 The Surface Modification of Cellulose

8.2.2.1 Chemical Surface Modification

8.2.2.2 Physical Surface Modification

8.3 The Methods and Technology of Preparation of the PVA/Cellulose Composites

8.3.1 Solvent Casting

8.3.2 Melt Processing

8.3.3 Electrospun Fiber

8.3.4 In Situ Production

8.4 The Relationship between Structure and Properties of PVA/Cellulose Composites

8.4.1 Interpenetrating Polymer Network

8.4.2 Hydrogen-Bonding or Bond Network

8.4.3 Chemical Cross-Linked Network

8.5 The Effect of the Interaction between PVA and Cellulose on Properties of PVA/Cellulose Composites

8.5.1 Characterization Methods for the Interaction between PVA and Cellulose

8.5.1.1 Raman Spectroscopy

8.5.1.2 Differential Scanning Calorimetry

8.5.1.3 X-Ray Powder Diffraction

8.5.1.4 Fourier Transform Infrared

8.5.2 Interaction between PVA and Cellulose

8.5.2.1 Molecular Interactions

8.5.2.2 Covalent Interactions

8.5.2.3 Nucleation of Cellulose

8.6 Conclusions and Outlook

References

9 Green Composites with Cellulose Nanoreinforcements

9.1 Introduction

9.2 A Short Overview on Nanosized Cellulose

9.3 General Aspects on Green Composites with Cellulose Nanoreinforcements

9.4 Green Composites from Biopolyamides and Cellulose Nanoreinforcements

9.5 Green Composites from Polylactide and Cellulose Nanoreinforcements

9.5.1 General Aspects

9.5.2 Processing Methods

9.5.2.1 Solution Casting

9.5.2.2 Melt Processing

9.5.2.3 Other Processing Techniques

9.5.3 Mechanical, Thermal, and Morphological Properties

9.5.4 Applications

9.6 Microbial Polyesters Nanocellulose Composites

9.6.1 PHAs Biosynthesis

9.6.2 General Overview on PHAs–Nanocellulose Composites

9.6.3 Processing Strategies for the Preparation of PHAs–Cellulose Nanocomposites

9.6.4 Morphological, Thermal, and Mechanical Characteristics of PHAs/Nanocellulose

9.6.5 Biodegradability and Biocompatibility

9.6.6 Applications

9.7 Conclusions

Acknowledgment

References

10 Biomass Composites from Bamboo-Based Micro/Nanofibers

10.1 Introduction

10.2 Bamboo Microfiber and Microcomposites

10.2.1 Bamboo Fibrovascular Bundle Structure

10.2.2 Preparation Methods of Short Bamboo Microfiber

10.2.3 Preparation of sBµF with Super-Heated Steam

10.2.3.1 SHS Treatment

10.2.3.2 Characterization Methods of sBµF

10.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo

10.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo

10.2.3.5 Classification of sBµF

10.2.4 Preparation of sBµF/Plastic Microcomposites

10.2.4.1 Mechanical and Physical Properties of sBµF/Plastic Microcomposites

10.2.4.2 Melt Processability of sBµF/Plastic Microcomposites

10.2.4.3 Electrical Properties of sBµF/Plastic Microcomposites

10.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite

10.3.1 Nanofibrillation Technologies of Cellulose

10.3.2 Nanofibrillation Technologies of Lignocellulose

10.3.3 Reactive Processing for Nanofibrillation

10.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation

10.3.5 Preparation of BLCNF/Plastic Nanocomposites

10.3.6 Properties of BLCNF/Plastic Nanocomposites

10.4 Conclusions

References

11 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources

11.1 Introduction

11.2 Synthesis

11.2.1 Chemical Synthesis of Polycarbonates

11.2.2 Synthesis of Polycarbonate from Eugenol

11.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione

11.2.4 Synthesis of Mesoporous PC–SiO2

11.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP)

11.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP)

11.3 Polycarbonates from Renewable Resources

11.3.1 Ethylene from Biomass

11.3.2 Synthesis of Dianols via Microwave Degradation

11.3.3 Glycerol Carbonates from Recyclable Catalyst

11.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses

11.3.5 Liquid-Phase Synthesis of Polycarbonate

11.4 Medicinal Properties

11.4.1 Polycarbonates in Drug Delivery

11.4.2 Polycarbonates in Gene Transformation

11.4.3 Cytotoxicity Test of Polycarbonates

11.4.4 Polycarbonates in Autoimmunity

11.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates

11.5 Conclusion

References

12 Nanostructured Polymer Composites with Modified Carbon Nanotubes

12.1 Introduction

12.1.1 Polymer Materials and Their Application

12.1.2 Carbon Nanotubes Application and Their Main Properties

12.2 Experimental Methods

12.2.1 Investigation of the CNTs Synthesis

12.2.2 CNTs Treatment

12.2.3 Composites Fabrication

12.2.4 Testing Procedures

12.3 Results and Discussion

12.3.1 FTIR Spectroscopy

12.3.2 Influence of Fluorination on the CNTs Specific Surface

12.3.3 X-Ray Photoelectron Spectroscopy Study

12.3.4 TGA of Virgin and Fluorinated CNTs

12.3.5 SEM Data of Composites Fracture

12.3.6 TGA and DSC of Composites

12.3.7 Mechanical Properties of Composites

12.3.7.1 Tensile Strength

12.3.7.2 Flexural Strength

12.4 Conclusion

Acknowledgments

References

13 Organic–Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities

13.1 Introduction

13.2 Constituents

13.2.1 Polysaccharides

13.2.2 Inorganic Nanofillers

13.3 Preparation of Polysaccharide-Derived Nanocomposites

13.3.1 Surface Modification

13.3.2 Addition of Components

13.3.3 In Situ Preparation of Nanoparticles via Precursors

13.4 Processing

13.4.1 Plasticizers

13.4.2 Conventional Processing Methods to Prepare Inorganic–Polysaccharide Nanocomposites

13.4.3 Emerging Methods to Prepare Inorganic–Polysaccharide Nanocomposites

13.5 Trends and Perspectives

Acknowledgments

References

14 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future

14.1 Introduction

14.2 Wood Polymer Nanocomposite

14.3 Basic Components of Wood Polymer Nanocomposite

14.4 Natural Polymer/Raw Material Used in Preparation of WPNC

14.4.1 Starch

14.4.2 Gluten

14.4.3 Chitosan

14.4.4 Vegetable Oil

14.4.4.1 Chemical Modification of Vegetable Oil

14.5 Wood

14.6 Cross-Linker

14.7 Modification of Natural Polymers

14.7.1 Grafting of Starch

14.7.2 Modification of Starch by Other Methods

14.7.3 Plasticizer

14.7.4 Nano-Reinforcing Agents

14.7.4.1 Montmorillonite

14.7.4.2 Metal Oxide Nanoparticles

14.7.4.3 Carbon Nanotubes

14.7.4.4 Nanocellulose

14.8 Properties of Natural Polymer-Based Composites

14.8.1 Mechanical Properties

14.8.2 Thermal Properties

14.8.3 Water Uptake and Dimensional Stability

14.9 Conclusion and Future Prospects

References

15 Cellulose Whisker-Based Green Polymer Composites

15.1 Cellulose: Discovery, Sources, and Microstructure

15.1.1 Sources of Cellulose

15.1.2 Microstructure of Cellulose

15.2 Nanocellulose

15.2.1 Acid Hydrolysis

15.2.2 Mechanical Processes

15.2.3 TEMPO-Mediated Oxidation

15.2.4 Steam Explosion Method

15.2.5 Enzymatic Hydrolysis

15.2.6 Hydrolysis with Gaseous Acid

15.2.7 Treatment with Ionic Liquid

15.3 Polymer Composites

15.3.1 Polymer Composite Fabrication Techniques

15.3.1.1 Casting Evaporation Technique

15.3.1.2 Extrusion

15.3.1.3 Compression Molding

15.3.1.4 Injection Molding

15.3.2 Cellulose Whisker Composites: Literature-Based Discussion

15.3.2.1 Latex-Based Composites

15.3.2.2 Polar Polymer-Based Composites

15.3.2.3 Nonpolar Polymer-Based Composites

15.4 Applications of Cellulose Whisker Composites

15.4.1 Packaging

15.4.2 Automotive and Toys

15.4.3 Electronics

15.4.4 Biomedical Applications

References

16 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives

16.1 Introduction

16.2 Biopolymers

16.2.1 Classification of Biopolymers

16.3 PLA Nanocomposites

16.3.1 PLA–Clay Nanocomposites

16.3.2 PLA–Carbonaceous Nanocomposites

16.3.3 PLA-Bio Filler Composites

16.3.4 PLA–Silica Nanocomposites

16.4 Summary

References

17 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials

17.1 Introduction: Natural Based Products

17.2 Nanocellulose

17.2.1 Nanocellulose: Properties

17.2.1.1 Nanocellulose: Mechanical Properties

17.2.1.2 Nanocellulose: Physical Properties

17.2.1.3 Nanocellulose: Surface Chemistry Properties

17.2.2 Nanocellulose: Synthesis Process

17.2.2.1 Conventional Acid Hydrolysis Process

17.2.3 Nanocellulose: Limitations

17.2.3.1 Single Particles Dispersion

17.2.3.2 Barrier Properties

17.2.3.3 Permeability Properties

17.3 Nanocellulose: Chemical Functionalization

17.3.1 Organic Compounds Functionalization

17.3.1.1 Molecular Functionalization

17.3.1.2 Macromolecular Functionalization

17.3.2 Nanocellulose: Inorganic Compounds Functionalization

17.3.2.1 Nanocellulose-Titanium Oxide Functionalization

17.3.2.2 Nanocellulose-Fluorine Functionalization

17.3.2.3 Nanocellulose-Gold Functionalization

17.3.2.4 Nanocellulose-Silver Functionalization

17.3.2.5 Nanocellulose-Pd Functionalization

17.3.2.6 Nanocellulose-CdS Functionalization

17.4 Applications of Functionalized Nanocellulose

17.4.1 Wastewater Treatment

17.4.2 Biomedical Applications

17.4.3 Biosensor and Bioimaging

17.4.4 Catalysis

17.5 Conclusion

Acknowledgment

References

18 Halloysite-Based Bionanocomposites

18.1 Introduction

18.2 Biodegradable Polymers

18.2.1 Cellulose

18.2.2 Chitosan

18.2.3 Starch

18.2.4 Alginate

18.2.5 Pectin

18.3 Natural Inorganic Filler: Halloysite Nanotubes

18.3.1 Functionalization of HNTs

18.3.1.1 Functionalization of External Surface

18.3.1.2 Functionalization of the Lumen

18.3.2 Composites Structured with Halloysite

18.4 Bionanocomposites

18.4.1 HNT-Biopolymer Nanocomposite Formation

18.4.2 Properties of HNTs-Biopolymer Nanocomposites

18.4.2.1 Bionanocomposites Surface Morphology

18.4.2.2 Bionanocomposites Mechanical and Thermal Response

18.5 Applications of HNT/Polysaccharide Nanocomposites

18.6 Conclusions

References

19 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles

19.1 Introduction

19.2 Silver Nanoparticles

19.3 Applications of Silver Nanoparticles

19.4 Silver Nanoparticle Composites

19.4.1 In situ and ex situ Strategies for AgNPs-Based Composites with Polymer Matrix

19.4.2 Other AgNPs Composites

19.5 Applications of Silver Nanoparticles Composites

19.5.1 Active Substance Delivery Composites

19.5.2 Antimicrobial Composites

19.6 Conclusions and Future Prospectives

Acknowledgments

References

20 Starch-Based Biomaterials and Nanocomposites

20.1 Introduction

20.2 Starch: Structure and Characteristics

20.3 Applicability of Starch in Food Industry

20.3.1 Starch Biomaterials: Films, Coatings, and Blends

20.3.2 Reinforced Materials

20.3.3 Starch Nanoparticles

20.4 Conclusion

References

21 Green Nanocomposites-Based on PLA and Natural Organic Fillers

21.1 Introduction

21.2 Poly(lactic acid) (PLA)

21.3 Natural Organic Nanofillers

21.3.1 Cellulose

21.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA

21.3.2 Chitin

21.3.3 Starch

21.4 Bionanocomposites Based on PLA

21.4.1 PLA/cellulose Nanocomposites

21.4.1.1 Preparation

21.4.1.2 Properties

21.4.1.3 Degradation

21.4.2 PLA/chitin Nanocomposites

21.4.2.1 Preparation

21.4.2.2 Properties

21.4.3 PLA/starch Nanocomposites

21.4.3.1 Preparation

21.4.3.2 Properties

21.5 Conclusions

References

22 Chitin and Chitosan-Based (NANO) Composites

22.1 Introduction

22.1.1 Chitin

22.1.2 Chitosan

22.2 Chitin and Chitosan Properties and Processing

22.3 Preparation and Characterization of Ct and Cs Composites: An Overview

22.4 Ct- and Cs-Metal Composites

22.5 Ct and Cs-Inorganic Composites

22.5.1 Food Packaging

22.5.2 Membranes

22.5.3 Biomedical Uses

22.5.4 Environmental Remediation

22.6 Composites Based on Ct and Cs Whiskers

22.7 Overview, Perspectives, and Conclusion

References

Index

EULA

The users who browse this book also browse