Nanocellulose and Nanohydrogel Matrices :Biotechnological and Biomedical Applications

Publication subTitle :Biotechnological and Biomedical Applications

Author: Mohammad Jawaid   Faruq Mohammad  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9783527803828

P-ISBN(Paperback): 9783527341726

Subject: TB381 Intelligent material

Keyword: antibacterial, antimicrobial, tissue engineering, fibers, therapeutics

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.5 Nanocellulose in Tablet Formulations

1.6 Aerogel Systems

1.7 Hydrogels

1.8 Nanocellulose in Transdermal Drug Delivery

1.9 Conclusion

References

Chapter 2 Bacterial Cellulose and Polyester Hydrogel Matrices in Biotechnology and Biomedicine: Current Status and Future Prospects

2.1 Introduction

2.2 Chemical Structure of Cellulose

2.3 Types of Cellulose

2.4 Bacterial Cellulose

2.5 Chemical Structure of BC

2.6 History of BC

2.7 Biosynthesis of Bacterial Cellulose

2.8 Properties

2.8.1 Biocompatibility

2.8.1.1 In Vitro Biocompatibility

2.8.1.2 In Vivo Biocompatibility

2.8.2 Hemocompatibility

2.8.3 Mechanical Properties

2.8.4 Microporosity

2.8.5 Biodegradability

2.9 Present Status of BC

2.10 Applications

2.10.1 Drug Delivery

2.10.2 Antibacterial/Antimicrobial Studies

2.10.3 Biomedicine

2.10.4 Wound Dressing

2.10.5 Cardiovascular Implant

2.10.6 Cartilage Meniscus Implant

2.10.7 Bone Tissue Implant

2.10.8 Other Biomedical Applications

2.10.9 Artificial Cornea

2.10.10 Biotechnology

2.11 Future Prospects

2.12 Polyester Hydrogels

2.13 Chemical Structure of Hydrogels

2.14 Types of Hydrogels

2.15 Properties of Hydrogels

2.15.1 Swelling Properties

2.15.2 Biodegradability

2.15.3 Biocompatibility

2.16 Historical Background of Polyester Hydrogels

2.17 Recent Developments of Polyester Hydrogels

2.18 Applications of Polyester Hydrogels

2.18.1 Drug Delivery

2.18.2 Antibacterial/Antimicrobial Studies

2.18.3 Biomedicine

2.18.4 Biotechnology

2.18.5 Tissue Engineering

2.19 Future Prospects

References

Chapter 3 Bacterial Nanocellulose Applications for Tissue Engineering

3.1 Introduction

3.2 Cellulose

3.3 Nanocellulose and Its Types

3.3.1 Cellulose Nanocrystals (CNCs)

3.3.2 Cellulose Nanofibrils (CNFs)

3.3.3 Bacterial Cellulose (BC)

3.4 Isolation and Preparation of Bacterial Cellulose

3.5 BC Properties for Tissue Engineering Applications

3.5.1 Mechanical Properties of BC

3.5.2 Surface Biochemistry Properties

3.5.3 Biological Properties

3.5.3.1 Biocompatibility

3.5.3.2 Biodegradability In Vivo

3.6 Tissue Engineering Applications

3.7 Conclusion and Future Research

References

Chapter 4 Cellulose-Based Nanohydrogels for Tissue Engineering Applications

4.1 Introduction

4.2 Preparation of Hydrogels/Cellulosic Hydrogels

4.3 Characterization of Hydrogels/Cellulosic Hydrogels

4.3.1 Fourier Transform Infrared Spectroscopy of Hydrogels/Cellulosic Hydrogels

4.3.2 Scanning Electron Microscopy of Hydrogels/Cellulosic Hydrogels

4.3.3 Nuclear Magnetic Resonance of Hydrogels

4.3.4 X‐ray Diffraction (XRD) of Hydrogels

4.3.5 Transmission Electron Microscopy (TEM) of Hydrogels

4.4 Properties of Hydrogels

4.4.1 Swelling Properties of Hydrogels

4.4.2 Thermal Properties of Hydrogels

4.4.3 Rheological Properties of Hydrogels

4.4.4 Mechanical Properties of Hydrogels

4.5 Cellulose-Based Nanohydrogels for Tissue Engineering Applications

4.6 Concluding Remarks

Acknowledgment

References

Chapter 5 Chitosan-Mediated Layer-by-Layer Assembling Approach for the Fabrication of Biomedical Probes and Advancement of Nanomedicine

5.1 Introduction

5.2 Chitosan for Biofabrication

5.3 Derivatization of Chitosan

5.3.1 Derivatization by Direct Chemical Modification

5.3.2 Derivatization by Complex Formation

5.4 Chitosan-Mediated Biofabrication: Different Shapes and LBL Assembly

5.5 Chitosan-Mediated Assembly of Biomedical Probes and Devices

5.5.1 Biosensors

5.5.2 Biopharmaceuticals

5.5.3 Tissue Engineering Appliances

5.5.4 Implant Materials

5.5.5 Diagnostic Probes

5.5.6 Surgical Aids

5.6 Factors Influencing the Characteristics of Chitosan toward Biomedical Applications

5.6.1 Degree of Deacetylation (DD)

5.6.2 Degree of Quaternization (DQ)

5.6.3 Length and Type of Alkyl Chain

5.6.4 Solubility

5.6.5 pH

5.6.6 Molecular Weight (MW)

5.6.7 Substituent Charge

5.7 Summary and Conclusion

Acknowledgments

References

Chapter 6 Hydrogels Based on Nanocellulose and Chitosan: Preparation, Characterization, and Properties

6.1 Introduction

6.2 Polymeric Aerogels

6.2.1 Sol–Gel Process

6.2.1.1 Starch Gel by the Chemical Cross‐linking Technique

6.2.1.2 Alginate Hydrogel by Ionic Interaction Technique

6.2.1.3 κ‐Carrageenan Hydrogel by Heating/Cooling Technique

6.2.1.4 Cellulose Hydrogel by the Hydrogen‐Bonding Technique

6.2.2 Gel Drying

6.2.2.1 Ambient Pressure Drying

6.2.2.2 Freeze‐Drying

6.2.2.3 Supercritical Drying

6.3 Chitosan and Functionalized Chitosan Hydrogels

6.3.1 Chitosan Biopolymer

6.3.2 Chemical and Physical Cross‐linked Chitosan Hydrogel

6.3.2.1 Physical Gel

6.3.2.1.1 Ionically Cross-linked Chitosan Hydrogel

6.3.2.1.2 Polyelectrolyte Complexed Chitosan Hydrogels

6.3.2.2 Chemical Gels

6.3.3 Chitosan Hybrid Aerogels

6.4 Biopolymeric Aerogels in Biomedical Applications

References

Chapter 7 Cellulose Nanocrystals and PEO/PET Hydrogel Material in Biotechnology and Biomedicine: Current Status and Future Prospects

7.1 Introduction

7.2 Cellulose Nanocrystals

7.2.1 Cellulose

7.2.2 Cellulose Nanocrystals (CNCs)

7.2.3 Why CNC?

7.2.3.1 Mechanical Properties

7.2.3.2 Surface Chemistry

7.2.3.3 Biocompatibility

7.2.3.4 In vivo Biodegradability

7.2.3.5 Toxicity

7.2.4 CNC in Biotechnology and Biomedicine

7.2.4.1 Biotechnology

7.2.4.1.1 Tissue Engineering

7.2.4.1.2 Enzyme or Protein Immobilization and Recognition

7.2.4.2 Biomedicine

7.2.4.2.1 Drug-Loaded System

7.2.4.2.2 Medical Implants

7.2.4.2.3 Cancer Targeting

7.2.4.2.4 Antimicrobial Nanomaterials

7.2.5 Future Prospects

7.3 Polyethylene Oxide (PEO)/Polyethylene Terephthalate (PET) Hydrogel

7.3.1 Hydrogel

7.3.2 Classification

7.3.3 Polyethylene Oxide (PEO)/Polyethylene Terephthalate (PET)

7.3.4 PEO/PET Hydrogel in Biotechnology and Biomedicine

7.3.4.1 Biotechnology

7.3.4.1.1 Tissue Engineering

7.3.4.1.2 Medical Devices and Biosensors

7.3.4.2 Biomedicine

7.3.4.2.1 Drug Delivery

7.3.4.2.2 Medical Implants

7.3.4.2.3 Wound Dressings

7.3.5 Future Prospects

7.4 Conclusion

References

Chapter 8 Conducting Polymer Hydrogels: Synthesis, Properties, and Applications for Biosensors

8.1 Introduction

8.2 Synthesis and Processing of CPHs

8.2.1 Conventional Synthetic Methods for CPHs

8.2.2 Recently Developed Preparation Routes for CPHs

8.3 CPHs for Electrochemical Biosensors

8.3.1 Conducting Polymer‐Based Biosensors

8.3.2 Hydrogel‐Based Biosensors

8.3.3 Ionically Cross‐linked Conducting Polymer Hydrogels and Their Applications in Biosensors

8.3.4 Doping Acid Cross‐Linking as a Novel Method to Fabricate Conducting Polymer Hydrogels and Their Application in Biosensors

8.4 Conclusion

Acknowledgments

References

Chapter 9 Nanocellulose and Nanogels as Modern Drug Delivery Systems

9.1 Introduction

9.2 Nanoparticles as Drug Delivery Systems

9.2.1 State of the Art

9.2.2 Challenges

9.3 Nanocelluloses

9.3.1 Nanocellulose Structure, Preparation, and Properties

9.3.2 Nanocellulose as Drug Delivery Carrier

9.3.2.1 Nanocellulose Drug Formulations for Topical Administration

9.3.2.1.1 Topical Application of Nanocomposites with Local Effect

9.3.2.1.2 Nanocellulose in Transdermal Drug Delivery Systems

9.3.2.2 Nanocellulose Formulations for Internal (Into‐the‐Body) Administration

9.3.2.2.1 Nanocellulose in Tablet Compression and Coating

9.3.2.2.2 Nanocellulose in Implants for Local Therapy

9.3.2.2.3 Biocompatibility and Toxicology

9.4 Nanogels

9.4.1 Definition

9.4.2 Characteristics

9.4.2.1 Swelling

9.4.2.2 Biocompatibility and Biodegradability

9.4.2.3 Drug Loading

9.4.2.4 Drug Release

9.4.3 Stimuli‐Responsive Nanogels

9.4.4 Targetability

9.4.5 Toxicity

9.4.6 Easy Synthesis of Nanogels

9.4.7 Nanogel Applications in Drug Delivery

9.4.7.1 Nanogel Delivery Systems for Cancer Therapy

9.4.7.1.1 Nanogels Carriers of More Than a Single Drug

9.4.7.2 Nanogels for Drug Delivery across Biological Barriers

9.4.7.3 Nanogels in Vaccine Delivery

9.4.7.4 Nanogels in Anti‐inflammatory Drug Delivery

9.4.7.5 Nanogels in Treatment of Autoimmune Diseases

9.5 Conclusions and Outlook

References

Chapter 10 Recent Advances on Inhibitors of Apoptosis Proteins (IAP) Particularly with Reference to Patents

10.1 Introduction

10.1.1 Inhibitor of Apoptosis Proteins

10.1.2 IAPs and Cancer

10.1.2.1 XIAP

10.1.2.2 cIAPs

10.1.3 Mechanism of Action and Development of Smac Mimetics

10.1.3.1 Prudence Section

10.2 Patent Assessments

10.2.1 Fused Pyrrolidine as IAP Inhibitors

10.2.2 Fused Pyrazinone Derivatives

10.2.3 Indoles and Azaindoles

10.2.4 Dimeric Indoles

10.3 Other Heterocyclics as IAPs

10.3.1 Diazepine and Diazocine Derivatives as IAP Antagonists

10.3.2 Triazole‐Containing Macrocycles as IAPs

10.3.3 Isoquinoline‐Based IAP Antagonists

10.3.4 Dimeric and Pseudodimeric Peptidomimetics as IAPs

10.3.5 Pyrrolidine‐Containing IAP Antagonists

10.3.6 Miscellaneous Structures as IAPs

10.4 Conclusion and Perspectives

Acknowledgments

References

Chapter 11 Nanohydrogels: History, Development, and Applications in Drug Delivery

11.1 Introduction

11.2 History

11.2.1 First‐Generation Hydrogels

11.2.2 Second‐Generation Hydrogels

11.2.2.1 pH‐Sensitive Hydrogels

11.2.2.2 Temperature‐Responsive Hydrogels

11.2.3 Third‐Generation Hydrogels

11.3 Classification of Hydrogels Based on the Type of Cross-Link Junctions

11.3.1 Physical Network‐Based Hydrogels

11.3.2 Chemical Network‐Based Hydrogels

11.3.3 Hydrogels Based on Ionic Interaction

11.3.4 Enzyme‐Based Cross‐Linking Hydrogels

11.3.5 Photosensitive Functional Group‐Based Cross‐Linked Hydrogels

11.4 Classification of Hydrogels Based on Properties

11.5 Classification of Interpenetrating Network Hydrogels

11.5.1 Homopolymeric Hydrogels

11.5.2 Copolymeric Hydrogel

11.5.3 Semi‐interpenetrating Hydrogels

11.5.4 Interpenetrating Hydrogels

11.6 Classification Based on Source

11.7 Properties of Hydrogels

11.7.1 Swelling Properties

11.7.2 Elasticity of Hydrogels

11.7.3 Porosity and Permeation of Hydrogels

11.7.4 Mechanical Properties of Hydrogels

11.7.5 Biocompatibility of Hydrogels

11.7.6 Inhomogeneity of Hydrogels

11.8 Nanohydrogels and Their Applications

11.8.1 Polysaccharide‐Based Nanohydrogels

11.8.1.1 Hyaluronic Acid‐Based Nanohydrogels in Drug Delivery

11.8.1.2 Chitosan‐Based Nanohydrogels in Drug Delivery

11.8.1.3 Alginate‐Based Nanohydrogels in Drug Delivery

11.8.1.4 Pectin‐Based Nanohydrogels in Drug Delivery

11.8.1.5 Dextran‐Based Nanohydrogels in Drug Delivery

11.8.1.6 Cellulose‐Based Nanohydrogels in Drug Delivery

11.9 Conclusion

References

Chapter 12 Nanofibrillated Cellulose and Copoly(amino acid) Hydrogel Matrices in Biotechnology and Biomedicine

12.1 History and Background of Celluloses

12.2 Structure of Cellulose

12.2.1 Characterization of Cellulose

12.2.2 Crystalline and Amorphous Regions

12.3 Nanocelluloses

12.3.1 Nanofibrillated Cellulose (NFC)

12.3.2 Production of NFC

12.3.2.1 Surface Modification of Nanofibrillated Cellulose

12.3.2.2 Coupling Agent

12.3.2.3 TEMPO‐Mediated Oxidation Pretreatment

12.3.2.4 Other Chemical Methods

12.3.3 Biomedical Applications of NFC

12.3.3.1 Immunoassays and Diagnostics

12.3.3.2 Three‐Dimensional (3D) Cell Cultures

12.3.3.3 Replacement of the Nucleus Pulposus

12.3.3.4 Controlled Drug Delivery

12.3.3.5 Wound Healing

12.3.4 Biotechnology Applications of NFC

12.3.4.1 Genetically Engineered Fusion

12.3.4.2 Immobilization–Stabilization

12.3.4.3 Cartilage Tissue Engineering

12.4 Hydrogels

12.4.1 Role of Swelling in Hydrogels

12.4.1.1 Sol–Gel Transition in Hydrogels

12.4.1.2 Classification of Hydrogel Products

12.4.1.3 Hydrogel Technical Features

12.4.2 Preparation of Poly(amino acids)

12.4.3 Biomedical Application of Hydrogels

12.4.3.1 Treatment of Hepatoma

12.4.3.2 Drug Delivery

12.4.3.3 Anticancer Drug

12.4.4 Biotechnology Applications of Hydrogels

12.4.4.1 Genetic Engineering

12.4.4.2 Amyloidogenicity Code

12.4.4.3 Antibodies

12.5 Conclusion

References

Index

EULA

The users who browse this book also browse