Advances in Food Diagnostics

Chapter

1.5 Quality programs – steps towards sector quality agreements

1.5.1 Overview

1.5.2 A closed system concept – the case of IKB

1.5.3 An open sector system concept – the case of Q&S

1.5.4 Trade initiatives

1.6 The information challenge

1.6.1 Information clusters

1.6.2 Organisational alternatives

1.6.3 Data ownership and data markets

1.6.4 Added value of emerging information infrastructures

1.7 Conclusion

References

Chapter 2 Methodologies for Improved Quality Control Assessment of Food Products

2.1 Introduction

2.2 Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives

2.2.1 Identification of polysaccharide food additives by FT-IR spectroscopy

2.2.2 Influence of hydration on FT-IR spectra of food additive polysaccharides

2.3 Use of outer product (OP) and orthogonal signal correction (OSC) PLS1 regressions in FT-IR spectroscopy for quantification purposes of complex food sample matrices

2.3.1 Outer product (OP)-PLS1 regression applied to the prediction of the degree of methylesterification of pectic polysaccharides in extracts of olive and pear pulps

2.3.2 Orthogonal signal correction (OSC)-PLS1 regression applied to white and red wine polymeric material extracts

2.4 Screening and distinction of coffee brews based on headspace – solid phase microextraction combined with gas chromatography in tandem with principal component analysis (HS-SPME/GC-PCA)

2.5 Comprehensive two-dimensional gas chromatography (GC × GC) combined with time-of-flight mass spectrometry (ToFMS) as a powerful tool for food products analysis

2.5.1 GC × GC-ToFMS principles and advantages

2.5.2 Beer volatile profiling by HS-SPME/GC × GC-ToFMS

2.6 Study of cork (from Quercus suber L.) – wine model interactions based on voltammetric multivariate analysis

2.6.1 Evaluation of the voltammetric analysis in what concerns the cyclic and square wave technique

2.6.2 Cyclic voltammetric analysis for cork classification

2.7 Concluding remarks

References

Chapter 3 Developments in Electronic Noses for Quality and Safety Control

3.1 Introduction

3.2 Overview of classical techniques for food quality testing

3.2.1 Chromatographic techniques

3.2.2 Spectroscopic techniques

3.2.3 Imaging techniques

3.2.4 Biological techniques

3.3 Electronic Nose

3.3.1 Various definitions of eNose reported in literature

3.3.2 Aroma as biomarker

3.4 Instrumentation of eNose (Loutfi et al., 2015)

3.4.1 Sampling system

3.4.1.1 Analytical distillation methods

3.4.1.2 Headspace analysis methods (HS)

3.4.1.3 Direct extraction methods

3.4.2 Detection system (Loutfi et al., 2015)

3.4.2.1 Types of chemical sensors for gaseous environment

3.4.3 Data processing system

3.5 Recent developments in electronic nose applications for food quality

3.5.1 Meat

3.5.2 Milk

3.5.3 Fish and seafood

3.5.4 Fruits and vegetables

3.5.5 Adulterants

3.5.6 Beverages

3.5.6.1 Non-alcoholic beverages

3.5.6.2 Alcoholic beverages

3.6 Conclusion

References

Chapter 4 Proteomics and Peptidomics as Tools for Detection of Food Contamination by Bacteria

4.1 Introduction

4.2 Bacteria as food-borne pathogens

4.3 Gram-positive bacteria

4.4 Gram-negative bacteria

4.5 Bacterial toxins

4.5.1 Endotoxins

4.5.2 Exotoxins

4.6 Detection of bacterial contamination in food

4.6.1 Omics methods for detection of bacteria

4.6.1.1 Proteomic and peptidomic methods

4.6.1.2 Affinity-based methods

4.6.1.3 Mass spectrometry-based methods

4.7 Analysis of bacterial toxins

4.8 Conclusions

4.9 Acknowledgements

References

Chapter 5 Metabolomics in Assessment of Nutritional Status

5.1 Introduction

5.2 Usability of metabolomics in nutrition sciences

5.3 The metabolite complement in human studies

5.4 Metabolomics within the analysis of relationship between diet and health

5.5 Individual differences in metabolic and nutritional phenotype

5.6 Assessment of nutritional status, example studies

5.6.1 Malnutrition

5.6.2 Deficiencies in particular nutrients

References

Chapter 6 Rapid Microbiological Methods in Food Diagnostics

6.1 Introduction

6.1.1 Why the need for rapid methods – their benefits and potential limitations

6.2 Quantitative vs qualitative

6.3 Culture dependent vs independent

6.4 Automation and multi-pathogen detection

6.5 Separation and concentration

6.5.1 Filtration

6.5.2 Stomacher

6.5.3 Pulsifier

6.6 Rapid methods that are currently in the market

6.6.1 Microscopic-based

6.6.1.1 DEFT – direct epifluorescent filter technique

6.6.1.2 FISH – fluorescent in situ hybridisation

6.6.1.3 Live dead assay

6.6.1.4 Enzyme-linked immunosorbent assay (ELISA)

6.6.1.5 MALDI-TOF MS

6.6.1.6 Flow cytometry

6.6.1.7 Solid phase cytometry

6.6.2 Metabolism-based detection

6.6.2.1 Head space analysis

6.6.3 Luminescence-based

6.6.3.1 Bioluminescence/ATP detection

6.6.4 Immunological/ serological based

6.6.4.1 Antibody-based latex agglutination assay

6.6.4.2 Immunoprecipitation

6.6.4.3 Immunomagnetic separation (IMS)

6.6.5 Nucleic acid-based (molecular)

6.6.5.1 DNA microarrays

6.6.5.2 DNA colony hybridisation

6.6.5.3 Polymerase chain reaction (PCR)

6.6.5.4 Nested PCR

6.6.5.5 Loop-mediated isothermal amplification (LAMP)

6.6.5.6 Real-time PCR

6.6.5.7 Quantitative PCR (qPCR)

6.6.5.8 Digital PCR

6.6.5.9 Droplet digital PCR

6.6.5.10 16S Riboprinting

6.6.6 Next-generation technologies

6.6.7 Immunosensors or biosensors

6.6.7.1 Electronic nose sensors

6.6.7.2 Mass-sensitive biosensors

6.6.7.3 Surface plasmon resonance (SPR)

6.6.7.4 Raman and Fourier transform spectroscopy

6.6.7.5 Fourier transform infrared spectroscopy (FTIR)

6.6.7.6 Fibre optic biosensor

6.6.7.7 Aptamer-based biosensors

6.6.7.8 Nanotechnology for pathogen detection

6.7 Conclusion

References

Chapter 7 Molecular Technologies for the Detection and Characterisation of Food-Borne Pathogens

7.1 Introduction

7.2 Hybridisation-based methods

7.2.1 DNA hybridisation methods

7.2.2 RNA hybridisation methods

7.2.2.1 Fluorescent in situ hybridisation (FISH)

7.2.3 DNA microarrays

7.3 Nucleic acid amplification methods

7.3.1 Polymerase chain reaction

7.3.1.1 Real-time PCR

7.3.1.2 Quantitative PCR

7.3.1.3 Multiplex PCR

7.3.2 RNA-based amplification assays

7.3.2.1 Reverse transcriptase polymerase chain reaction

7.3.2.2 Viability dyes in RT-PCR

7.3.3 Isothermal amplification

7.3.3.1 Loop-mediated isothermal amplification (LAMP)

7.3.3.2 Nucleic acid sequence-based amplification (NASBA)

7.4 Molecular characterisation methods

7.4.1 Pulse field gel electrophoresis (PFGE)

7.4.2 Amplified fragment length polymorphism (AFLP)

7.4.3 Restriction fragment length polymorphism (RFLP)

7.4.4 Multi-locus variable-number tandem repeat analysis (MLVA)

7.4.5 Multi-locus sequence typing (MLST)

7.4.6 Whole genome sequencing (WGS)

7.5 Conclusion

References

Chapter 8 DNA-based Detection of GM Ingredients

8.1 Introduction

8.2 Analysis of GMO

8.2.1 Sampling and DNA extraction

8.2.2 Choice of target sequences

8.2.3 Conventional end-point PCR

8.2.4 Real-time PCR

8.2.5 Digital PCR

8.2.6 Multiplex approaches

8.3 Quantification of GMOs

8.4 Validation

8.5 Challenges in GMO detection

8.5.1 Influences of food composition and processing

8.5.2 Copy numbers

8.5.3 Certified reference material

8.5.4 Sequence information

8.5.5 Stacked events

8.5.6 GM animals

8.6 Outlook

References

Chapter 9 Enzyme-based Sensors

9.1 Introduction to enzymatic biosensors

9.2 Types of transducers

9.3 Enzymatic biosensors and the food industry

9.4 Biosensors for the analysis of main food components

9.4.1 Sugars

9.4.2 Acids

9.4.3 Amino acids

9.4.4 Alcohols

9.5 Biosensors for contaminants

9.5.1 Pesticides

9.5.2 Heavy metals

9.6 Food freshness indicators, antinutrients and additives

9.7 Future perspectives

References

Chapter 10 Immunology-based Biosensors

10.1 Introduction

10.2 Antibodies and biosensors

10.2.1 Immunochemiluminescence biosensors

10.2.2 Site-directed antibody immobilisation techniques for immunosensors

10.2.3 Label-free arrayed imaging reflectometry (AIR) detection platform

10.3 Immunoassays for detection of microorganisms

10.4 Immunosensors and cancer biomarkers-immunoarrays

10.4.1 Microfluidic paper-based analytical devices (mPADs)

References

Chapter 11 Graphene and Carbon Nanotube-Based Biosensors for Food Analysis

11.1 Introduction

11.2 Biosensing devices based on graphene and CNTs and their applications in food analysis

11.3 Future trends and prospects

References

Chapter 12 Nanoparticles-Based Sensors

12.1 Introduction

12.2 Nanoparticles for sensor technology

12.2.1 Electrochemical techniques

12.2.2 Spectroscopic techniques

12.2.3 Nanoparticles characterisation

12.3 Nanoparticles-based sensors: applications

12.3.1 Nanoparticles based-sensors for pesticides detection in foods

12.3.2 Nanoparticles-based sensors for antibiotics, growth enhancers and other veterinary drugs detection in foods

12.3.3 Nanoparticles based-sensors for mycotoxins detection in foods

12.3.4 Nanoparticles based-sensors for microorganisms’ detection in foods

12.3.5 Nanoparticles-based sensors for detecting food valuable constituents

12.3.6 Nanoparticles based-sensors for detecting food contaminants and adulterations

12.3.7 Nanoparticles-based sensors for detecting food dyes/additives

12.3.8 Nanoparticles based-sensors for detecting metal ions in foods

12.4 Conclusions and future trends

References

Chapter 13 New Technologies for Nanoparticles Detection in Foods

13.1 Introduction

13.2 Nanoparticle properties and applications in food industry

13.2.1 Preparation of nanoparticles

13.2.1.1 Top-down strategy

13.2.1.2 Bottom-up strategy

13.2.2 Properties of nanoparticles

13.2.2.1 Organic nanoparticles

13.2.2.2 Inorganic nanoparticles

13.2.2.3 Combined nanoparticles

13.2.3 Applications of nanoparticles in food industry

13.2.3.1 Food functionalisation

13.2.3.2 Food packaging and quality preservation

13.3 Toxicity of food-related nanoparticles

13.3.1 Biological fate of ingested nanoparticles

13.3.2 Toxicity studies of engineered nanoparticles

13.4 Methods of nanoparticle detection in food

13.4.1 Direct visualisations of nanomaterials

13.4.2 Measurement of nanoparticles by light-scattering methods

13.4.3 Electrochemical methods in nanoparticle analysis

13.4.4 Food monitoring and safety controls

13.5 Conclusion

13.6 Acknowledgments

References

Chapter 14 Rapid Liquid Chromatographic Techniques for Detection of Key (Bio)chemical Markers

14.1 Introduction

14.2 The fundamentals of liquid chromatography

14.2.1 Adsorption HPLC

14.2.2 Ion exchange HPLC

14.2.3 Size exclusion HPLC

14.2.4 Partition HPLC

14.3 Advances in modern HPLC

14.4 Analysis of biochemical markers: applications for nutritional quality

14.4.1 Amino acids

14.4.2 Carbohydrate and carboxylic acids

14.4.3 Vitamins

14.4.4 Minerals and trace elements

14.4.5 Antioxidants

14.5 Analysis of biochemical markers: applications for food quality

14.5.1 Biochemical compounds

14.5.1.1 Amino acids

14.5.1.2 Nucleotides and nucleosides

14.5.2 Additives

14.5.3 Markers for process control

14.6 Analysis of biochemical markers: applications for the detection of food adulterations

14.7 Analysis of biochemical markers: applications for food safety

14.7.1 Biochemical compounds

14.7.2 Veterinary drug residues in foods of animal origin

14.7.3 Antibiotic residues in foods of animal origin

14.7.4 Other residues

References

Chapter 15 Olfactometry Detection of Aroma Compounds

15.1 Introduction

15.2 Extraction of volatile compounds from foods for GC-olfactometry analysis (GC-O)

15.3 Olfactometry techniques

15.3.1 Methodologies

15.3.1.1 Dilution analysis method

15.3.1.2 Detection frequency method

15.3.1.3 Direct intensity method

15.3.2 Use of GC-O methodologies

15.4 Applications of GC-O in food industry

15.4.1 Identification of key aroma compounds in different foods

15.4.2 Identification of off-flavours for quality control

15.4.3 Application of GC-O to production processes

15.4.4 Application of GC-O to reformulation of food aromas

15.5 Conclusions

15.6 Acknowledgements

References

Chapter 16 Data Handling

16.1 Introduction

16.2 Data collection

16.3 Data display

16.4 Process monitoring and quality control

16.5 Three-way PCA

16.6 Classification

16.7 Modelling

16.8 Calibration

16.9 Variable selection

16.10 Conclusion: future trends and the advantages and disadvantages of chemometrics

Chapter 17 Automated Sampling Procedures

17.1 Introduction

17.2 Extraction techniques for sample preparation

17.2.1 Extraction from liquid samples

17.2.1.1 Liquid-liquid extraction

17.2.1.2 Solvent microextraction (SME)

17.2.1.3 Solid-phase extraction (SPE)

17.2.2 Extraction from solid samples

17.2.2.1 Matrix solid phase dispersion (MSPD)

17.2.2.2 Pressurised liquid extraction (PLE)

17.2.2.3 Super-heated water extraction (SHWE)

17.2.2.4 Supercritical fluid extraction (SFE)

17.2.2.5 Microwave- and ultrasound-assisted extraction

Chapter 18 The Market for Diagnostic Devices in the Food Industry

18.1 Introduction

18.2 Food diagnostics

18.3 Product composition

18.3.1 Physical hazards

18.3.2 Biological hazards

18.3.3 Chemical hazards

18.3.3.1 Metals

18.3.3.2 Pesticides

18.3.3.3 Organic contaminants

18.3.3.4 Allergens

18.3.4 Metabolites

18.3.5 Desired product constituents

18.3.6 Source of constituents

18.4 Product structure

18.4.1 Viscosity

18.4.2 Air/gas

18.4.3 Crystal size

18.5 Influence of processing on product composition

18.5.1 Reactions between naturally present substances in food

18.5.2 Contamination with cleaning and disinfection agents

18.6 Processing parameters

18.6.1 General

18.6.2 Flow rate and velocity distribution/temperature and temperature distribution

18.6.3 Droplet, bubble, crystal size and distribution

18.6.4 Additional parameters for high-pressure processing

18.6.5 Pulsed electric field (PEF) processing

18.7 Packaging parameters

18.7.1 Sterility testing

18.8 Conclusion

References

Index

EULA

The users who browse this book also browse


No browse record.