Hybrid Nanomaterials :Advances in Energy, Environment, and Polymer Nanocomposites

Publication subTitle :Advances in Energy, Environment, and Polymer Nanocomposites

Author: Suneel Kumar Srivastava   Vikas Mittal  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9781119160359

P-ISBN(Paperback): 9781119160342

Subject: TB383 Keywords special structure material

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Preface xiii 1 Hybrid Nanostructured Materials for Advanced Lithium Batteries 1
Soumyadip Choudhury and Manfred Stamm 1.1 Introduction 1 1.2 Battery Requirements 4 1.3 Survey of Rechargeable Batteries 7 1.4 Advanced Materials for Electrodes 9 1.5 Future Battery Strategies 38 1.6 Limitations of Existing Strategies 59 1.7 Conclusions 62 Acknowledgments 63 References 63 2 High Performing Hybrid Nanomaterials for Supercapacitor Applications 79
Sanjit Saha, Milan Jana and Tapas Kuila 2.1 Introduction 80 2.2 Scope of the Chapter 82 2.3 Characterization of Hybrid Nanomaterials 82 2.4 Hybrid Nanomaterials as Electrodes for Supercapacitor 91 2.5 Applications of Supercapacitor 130 2.6 Conclusions 134 References 135 3 Nanohybrid Materials in the Development of Solar Energy Applications 147
Poulomi Roy 3.1 Introduction 147 3.2 Significance of Nanohybrid Materials 148 3.3 Synthetic Strategies 162 3.4 Application in Solar Energy Conversion 167 3.5 Summary 175 References 176 4 Hybrid Nanoadsorbents for Drinking Water Treatment: A Critical Review 199
Ashok K. Gupta, Partha S. Ghosal and Brajesh K. Dubey 4.1 Introduction 199 4.2 Status and Health Effects of Different Pollutants 201 4.3 Removal Technologies 203 4.4 Hybrid  Nanoadsorbent 208 4.5 Issues and Challenges 217 4.6 Conclusions 224 References 225 5 Advanced Nanostructured Materials in Electromagnetic Interference  Shielding 241
Suneel Kumar Srivastava and Vikas Mittal 5.1 Introduction 241 5.2 Theoretical Aspect of EMI Shielding 243 5.3 Experimental Methods in Measuring Shielding Effectiveness 247 5.4 Carbon Allotrope-Based Polymer Nanocomposites 248 Fillers-Based Polymer Nanocomposites 265 5.5 Intrinsically Conducting Polymer (ICP) Derived Nanocomposites 276 5.6 Summary 300 6 Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants 321
R. Ajay Rakkesh, D. Durgalakshmi and S. Balakumar 6.1 Introduction 321 6.2 Hybrid Nanomaterials: Smart Material for Sensing Environmental Pollutants 323 6.3 Synthesis Methods of Hybrid Nanomaterials 326 6.4 Basic Mechanism of Gas Sensors Using Hybrid Nanomaterials 330 6.5 Hybrid Nanomaterials-Based Conductometric Gas Sensors for Environmental Monitoring 331 6.6 Conclusion 342 References 342 7 Development of Hybrid Fillers/Polymer Nanocomposites for Electronic Applications 349
Mariatti Jaafar 7.1 Introduction 350 7.2 Factors Influencing the Properties of Filler/Polymer Composite 353 7.3 Hybridization of Fillers in Polymer Composites 355 7.4 Hybrid Fillers in Polymer Nanocomposites 358 7.5 Fabrication Methods of Hybrid Fillers/Polymer Composites 362 7.6 Applications of Hybrid Fillers/Polymer Composites 365 References 366 8 High Performance Hybrid Filler Reinforced Epoxy Nanocomposites 371
Suman Chhetri, Tapas Kuila and Suneel Kumar Srivastava 8.1 Introduction 372 8.2 Reinforcing Fillers 373 8.3 Necessity of Hybrid Filler Systems 376 8.4 Epoxy Resin 379 8.5 Preparation of Hybrid Filler/Epoxy Nanocomposites 380 8.6 Characterization of Hybrid Filler/Epoxy Polymer Composites 381 8.7 Properties of the Hybrid Filler/Epoxy Nanocomposites 383 8.8 Summary and Future Prospect 408 References 413 9 Recent Developments in Elastomer/Hybrid Filler Nanocomposites 423
Suneel Kumar Srivastava and Vikas Mittal 9.1 Introduction 423 9.2 Preparation Methods of Elastomer Nanocomposites 426 9.3 Hybrid Fillers in Elastomer Nanocomposites 427 9.4 Mechanical Properties of Hybrid Filler Incorporated Elastomer Nanocomposites 440 9.5 Dynamical Mechanical Thermal Analysis (DMA) of Elastomer Nanocomposites 452 9.6 Thermogravimetric Analysis (TGA) of Hybrid Filler Incorporated Elastomer Nanocomposites 464 9.7 Differential Scanning Calorimetric (DSC) Analysis of Hybrid Filler Incorporated Elastomer Nanocomposites 468 9.8 Electrical Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites 476 9.9 Thermal Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites 477 9.10 Dielectric Properties of Hybrid Filler Incorporated Elastomer Nanocomposits 477 9.11 Shape Memory Property of Hybrid Filler Incorporated Elastomer Nanocomposites 478 9.12 Summary 478 Acknowledgment 479 References 479  

Chapter

1.4.3 Hybrid Materials as Cathodes

1.5 Future Battery Strategies

1.5.1 Post Lithium-Ion Batteries

1.5.2 Lithium-Sulfur Batteries

1.5.3 Lithium-Air Batteries

1.5.3.1 Non-Aqueous Li-Air Battery

1.5.3.2 Aqueous Li-Air Battery

1.6 Limitations of Existing Strategies

1.7 Conclusions

Acknowledgments

References

2 High Performing Hybrid Nanomaterials for Supercapacitor Applications

2.1 Introduction

2.2 Scope of the Chapter

2.3 Characterization of Hybrid Nanomaterials

2.3.1 Morphological Characterization

2.3.2 Structural Characterization

2.3.3 Electrical and Electrochemical Properties

2.4 Hybrid Nanomaterials as Electrodes for Supercapacitor

2.4.1 Graphene Hybrid

2.4.2 Nanostructured Metal Oxide-Sulphide Hybrids

2.4.3 Conducting Polymer Hybrid

2.4.4 Carbon Balck and Carbon Fiber Hybrid

2.4.5 Carbon Nanotube and Fullerene Hybrid

2.5 Applications of Supercapacitor

2.5.1 Energy Storage Smart Grid

2.5.2 Cold Start and Transportation

2.5.3 Emergency Power

2.5.3.1 Windmills

2.5.3.2 Emergency Door

2.5.3.3 Digital Cameras

2.5.3.4 Wireless Systems and Burst-Mode Communications

2.5.3.5 Toys

2.5.4 Strategic Sector

2.5.5 UPS and Inverter

2.5.6 Others

2.6 Conclusions

References

3 Nanohybrid Materials in the Development of Solar Energy Applications

3.1 Introduction

3.2 Significance of Nanohybrid Materials

3.2.1 Use of Nanostructured Materials

3.2.2 Materials and Band Gap Engineering

3.2.2.1 Binary Metal Chalcogenides

3.2.2.2 Binary Metal Oxides

3.2.3 Types of Hybrid Materials

3.2.3.1 Core-Shell Nanoheterostructures

3.2.3.2 Carbon-Based Hybrid Nanostructure

3.2.3.3 Polymer-Based Hybrid Nanostructure

3.3 Synthetic Strategies

3.3.1 Hot-Injection Method

3.3.2 Hydrothermal/Solvothermal Method

3.3.3 Electrochemical Anodization

3.3.4 Chemical Vapor Deposition

3.4 Application in Solar Energy Conversion

3.4.1 Photocatalysis

3.4.2 Photoelectrochemical Water Splitting

3.4.3 Photovoltaic Devices

3.4.3.1 Dye-Sensitized Solar Cells

3.4.3.2 Quantum Dot-Sensitized Solar Cells

3.4.3.3 Si-Based Solar Cells

3.5 Summary

References

4 Hybrid Nanoadsorbents for Drinking Water Treatment: A Critical Review

4.1 Introduction

4.2 Status and Health Effects of Different Pollutants

4.3 Removal Technologies

4.4 Hybrid Nanoadsorbent

4.4.1 Synthesis of Material

4.4.2 Application of Hybrid Nanoadsorbents

4.4.2.1 Arsenic

4.4.2.2 Fluoride

4.4.2.3 Heavy Metals

4.5 Issues and Challenges

4.6 Conclusions

References

5 Advanced Nanostructured Materials in Electromagnetic Interference Shielding

5.1 Introduction

5.2 Theoretical Aspect of EMI Shielding

5.3 Experimental Methods in Measuring Shielding Effectiveness

5.4 Carbon Allotrope-Based Polymer Nanocomposites

5.4.1 Carbon Fiber-Filled Polymer Nanocomposites

5.4.2 CNT-Filled Polymer Nanocomposites

5.4.3 Graphene and Graphene Oxide Fillers-Based Polymer Nanocomposites

5.5 Intrinsically Conducting Polymer (ICP) Derived Nanocomposites

5.5.1 PANI in EMI Shielding Applications

5.5.2 PPy in EMI Shielding Applications

5.5.3 Core-Shell Morphology in EMI Shielding

5.6 Summary

Acknowledgement

References

6 Preparation, Properties and the Application of Hybrid Nanomaterials in Sensing Environmental Pollutants

6.1 Introduction

6.2 Hybrid Nanomaterials: Smart Material for Sensing Environmental Pollutants

6.3 Synthesis Methods of Hybrid Nanomaterials

6.3.1 Sol-Gel Method

6.3.2 Hydrothermal Methods

6.3.3 Layer-by-Layer Deposition Method

6.3.4 Template-Assisted Synthesis of Hybrid Materials

6.3.5 Physical Vapor Deposition

6.3.6 Gas-Sensing Principle of Hybrid Nanomaterials

6.4 Basic Mechanism of Gas Sensors Using Hybrid Nanomaterials

6.5 Hybrid Nanomaterials-Based Conductometric Gas Sensors for Environmental Monitoring

6.5.1 Hybrid Nanomaterials for Volatile Organic Components

6.5.2 Hybrid Nanomaterials for Ammonia Detection

6.5.3 Hybrid Nanomaterials for Hydrogen Detection

6.5.4 Hybrid Nanomaterials for Nitrous Oxide Detection

6.6 Conclusion

References

7 Development of Hybrid Fillers/Polymer Nanocomposites for Electronic Applications

7.1 Introduction

7.2 Factors Influencing the Properties of Filler/Polymer Composite

7.3 Hybridization of Fillers in Polymer Composites

7.4 Hybrid Fillers in Polymer Nanocomposites

7.5 Fabrication Methods of Hybrid Fillers/Polymer Composites

7.6 Applications of Hybrid Fillers/Polymer Composites

References

8 High Performance Hybrid Filler Reinforced Epoxy Nanocomposites

8.1 Introduction

8.2 Reinforcing Fillers

8.3 Necessity of Hybrid Filler Systems

8.4 Epoxy Resin

8.5 Preparation of Hybrid Filler/Epoxy Nanocomposites

8.6 Characterization of Hybrid Filler/Epoxy Polymer Composites

8.7 Properties of the Hybrid Filler/Epoxy Nanocomposites

8.7.1 Hybrid Fillers Based on CNT, GNP and GO

8.7.2 Hybrid Fillers Based on CB, CF, CNT and Graphene

8.7.3 Hybrid Fillers Based on Clay, CB, CNT and Glass Fibers

8.7.4 Hybrid Fillers Based on Ceramic Powder, CNT and GNP

8.7.5 Hybrid Fillers Based on Silica Particle Modified Graphene and CNTs

8.7.6 Hybrid Fillers Based on LDHs, Organohydroxide, MoS2, and Graphene

8.7.7 Hybrid Fillers Based on Silicate and Liquid Rubber

8.8 Summary and Future Prospect

References

9 Recent Developments in Elastomer/Hybrid Filler Nanocomposites

9.1 Introduction

9.2 Preparation Methods of Elastomer Nanocomposites

9.2.1 In-situ Polymerization

9.2.2 Solution Mixing

9.2.3 Melt Intercalation Method

9.3 Hybrid Fillers in Elastomer Nanocomposites

9.3.1 Dispersion of Hybrid Fillers in Elastomer Nanocomposites

9.3.2 Dispersion of Hybrid Fillers in PU Nanocomposites

9.3.3 Dispersion of Hybrid Fillers in SR Nanocomposites

9.3.4 Dispersion of Hybrid Fillers in NR Nanocomposites

9.3.5 Dispersion of Hybrid Fillers in SBR, NBR, EPDM and EVA Nanocomposites

9.4 Mechanical Properties of Hybrid Filler Incorporated Elastomer Nanocomposites

9.4.1 Mechanical Properties of Hybrid Filler Incorporated PU Nanocomposites

9.4.2 Mechanical Properties of Hybrid Filler Incorporated SR Nanocomposites

9.4.3 Mechanical Properties of Hybrid Filler Incorporated NR Nanocomposites

9.4.4 Mechanical Properties of Hybrid Filler Incorporated SBR, NBR, EPDM and EVA Nanocomposites

9.5 Dynamical Mechanical Analysis (DMA) of Elastomer Nanocomposites

9.5.1 DMA of Hybrid Filler Incorporated PU Nanocomposites

9.5.2 DMA of Hybrid Filler Incorporated SR Nanocomposites

9.5.3 DMA of Hybrid Filler Incorporated NR Nanocomposites

9.5.4 DMA of Hybrid Filler Incorporated SBR, NBR, EPDM Nanocomposites

9.6 Thermogravimetric Analysis (TGA) of Hybrid Filler Incorporated Elastomer Nanocomposites

9.6.1 TGA of Hybrid Filler Incorporated PU Nanocomposites

9.6.2 TGA of Hybrid Filler Incorporated SR Nanocomposites

9.6.3 TGA of Hybrid Filler Incorporated NR Nanocomposites

9.6.4 TGA of Hybrid Filler Incorporated SBR, NBR, EPDM and EVA Nanocomposites

9.7 Differential Scanning Calorimetric (DSC) Analysis of Hybrid Filler Incorporated Elastomer Nanocomposites

9.7.1 DSC of Hybrid Filler Incorporated PU Nanocomposites

9.7.2 DSC of Hybrid Filler Incorporated SR Nanocomposites

9.7.3 DSC of Hybrid Filler Incorporated NR Nanocomposites

9.7.4 DSC of Hybrid Filler Incorporated SBR and NBR Nanocomposites

9.8 Electrical Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites

9.9 Thermal Conductivity of Hybrid Filler Incorporated Elastomer Nanocomposites

9.10 Dielectric Properties of Hybrid Filler Incorporated Elastomer Nanocomposits

9.11 Shape Memory Property of Hybrid Filler Incorporated Elastomer Nanocomposites

9.12 Summary

Acknowledgments

References

Index

EULA

The users who browse this book also browse