Chapter
17 Hilbert spaces inside H[sup(2)]
17.1 The space mathcal
M(u)
17.2 The space mathcal M(bar u)
17.3 The space mathcal
H(b)
17.4 The space mathcal H(bar b)
17.5 Relations between different mathcal H(bar b) spaces
17.6 mathcal M(bar u) is invariant under S and S*
17.7 Contractive inclusion of mathcal M(u) in mathcal M(bar u)
17.8 Similarity of S and S[sub(mathcal H)]
17.9 Invariant subspaces of Z[sub(bar u)] and X[sub(bar u)]
17.10 An extension of Beurling's theorem
18 The structure of mathcal H(b) and mathcal H(bar b)
18.1 When is mathcal H(b) a closed subspace of H[sup(2)]?
18.2 When is mathcal H(b) a dense subset of H[sup(2)]?
18.3 Decomposition of mathcal
H(b) spaces
18.4 The reproducing kernel of mathcal
H(b)
18.5 mathcal H(b) and mathcal H(bar b) are invariant under T[sub(bar varphi)]
18.6 Some inhabitants of mathcal
H(b)
18.7 The unilateral backward shift operators X[sub(b)] and X[sub(bar b)]
18.8 The inequality of difference quotients
18.9 A characterization of membership in mathcal
H(b)
19 Geometric representation of mathcal
H(b) spaces
19.1 Abstract functional embedding
19.2 A geometric representation of mathcal
H(b)
19.3 A unitary operator from mathbb K[sub(b)] onto mathbb K[sub(b*)]
19.4 A contraction from mathcal H(b) to mathcal
H(b*)
19.5 Almost conformal invariance
19.6 The Littlewood subordination theorem revisited
19.7 The generalized Schwarz–Pick estimates
20 Representation theorems for mathcal H(b) and mathcal H(bar b)
20.1 Integral representation of mathcal H(bar b)
20.2 K[sub(ρ)] intertwines S[sub(ρ)]*
and X[sub(bar b)]
20.3 Integral representation of mathcal
H(b)
20.4 A contractive antilinear map on mathcal
H(b)
20.5 Absolute continuity of the Clark measure
20.6 Inner divisors of the Cauchy transform
20.7 V[sub(b)] intertwines S[sub(μ)]*
and X[sub(b)]
20.8 Analytic continuation of mathcal
H(b) functions
20.9 Multipliers of mathcal
H(b)
20.10 Multipliers and Toeplitz operators
20.11 Comparison of measures
21 Angular derivatives of mathcal
H(b) functions
21.1 Derivative in the sense of Carathéodory
21.2 Angular derivatives and Clark measures
21.3 Derivatives of Blaschke products
21.4 Higher derivatives of b
21.5 Approximating by Blaschke products
21.6 Reproducing kernels for derivatives
21.7 An interpolation problem
21.8 Derivatives of mathcal
H(b) functions
22 Bernstein-type inequalities
22.1 Passage between mathbb D and mathbb C[sub(+)]
22.2 Integral representations for derivatives
22.3 The weight w[sub(p,n)]
22.4 Some auxiliary integral operators
22.5 The operator T[sub(p,n)]
22.6 Distances to the level sets
22.7 Carleson-type embedding theorems
22.8 A formula of combinatorics
22.9 Norm convergence for the reproducing kernels
23 mathcal
H(b) spaces generated by a nonextreme symbol b
23.2 Inclusion of mathcal M(u) into mathcal
H(b)
23.3 The element f[sup(+)]
23.4 Analytic polynomials are dense in mathcal
H(b)
23.5 A formula for ||X[sub(b)]f||[sub(b)]
23.6 Another representation of mathcal
H(b)
23.7 A characterization of mathcal
H(b)
23.8 More inhabitants of mathcal
H(b)
23.9 Unbounded Toeplitz operators and mathcal
H(b) spaces
24 Operators on mathcal
H(b) spaces with b nonextreme
24.1 The unilateral forward shift operator S[sub(b)]
24.2 A characterization of H[sup(∞)] subset mathcal
H(b)
24.3 Spectrum of X[sub(b)] and X[sub(b)]*
24.4 Comparison of measures
24.5 The function F[sub(λ)]
24.6 The operator W[sub(λ)]
24.7 Invariant subspaces of mathcal H(b) under X[sub(b)]
24.8 Completeness of the family of difference quotients
25 mathcal H(b) spaces generated by an extreme symbol b
25.1 A unitary map between mathcal H(bar b) and L[sup(2)](ρ)
25.2 Analytic continuation of f in mathcal H(bar b)
25.3 Analytic continuation of f in mathcal
H(b)
25.4 A formula for ||X[sub(b)] f||[sub(b)]
25.5 S*-cyclic vectors in mathcal H(b) and mathcal H(bar b)
25.6 Orthogonal decompositions of mathcal
H(b)
25.7 The closure of mathcal H(bar b) in mathcal
H(b)
25.8 A characterization of mathcal
H(b)
26 Operators on mathcal
H(b) spaces with b extreme
26.1 Spectrum of X[sub(b)] and X[sub(b)]*
26.2 Multipliers of mathcal
H(b) spaces, extreme case, part I
26.3 Comparison of measures
26.4 Further characterizations of angular derivatives for b
26.5 Model operator for Hilbert space contractions
26.6 Conjugation and completeness of difference quotients
27 Inclusion between two mathcal
H(b) spaces
27.1 A new geometric representation of mathcal
H(b) spaces
27.2 The class mathscr I nt(V[sub(b1)],V[sub(b2)])
27.3 The class mathscr I nt(maths S[sub(b1)], mathscr S[sub(b2)])
27.4 Relations between different mathcal
H(b) spaces
27.6 Coincidence between mathcal H(b) and mathcal
D(μ) spaces
28 Topics regarding inclusions mathcal M(a) subset
mathcal H(bar b) subset mathcal H(b)
28.1 A necessary and sufficient condition for mathcal H(bar b) = mathcal H(b)
28.2 Characterizations of mathcal H(bar b) = mathcal
H(b)
28.3 Multipliers of mathcal
H(b) spaces, extreme case, part II
28.4 Characterizations of mathcal M(a) = mathcal
H(b)
28.5 Invariant subspaces of S[sub(b)]
when b(z)=(1+z)/2
28.6 Characterization of overline mathcal M(a)[sup(b)] = mathcal H(b)
28.7 Characterization of the closedness of mathcal M(a) in mathcal
H(b)
28.8 Boundary eigenvalues and eigenvectors of S[sub(b)]*
28.9 The space mathcal H[sub(0)](b)
28.10 The spectrum of S[sub(0)]
29 Rigid functions and strongly exposed points of H[sup(1)]
29.1 Admissible and special pairs
29.2 Rigid functions of H[sup(1)] and mathcal
H(b) spaces
29.3 Dimension of mathcal H[sub(0)](b)
29.4 S[sub(b)]-invariant subspaces of mathcal H(b)
29.5 A necessary condition for nonrigidity
29.6 Strongly exposed points and mathcal
H(b) spaces
30 Nearly invariant subspaces and kernels of Toeplitz operators
30.1 Nearly invariant subspaces and rigid functions
30.2 The operator R[sub(f)]
30.4 A characterization of nearly invariant subspaces
30.5 Description of kernels of Toeplitz operators
30.6 A characterization of surjectivity for Toeplitz operators
30.7 The right-inverse of a Toeplitz operator
31 Geometric properties of sequences of reproducing kernels
31.1 Completeness and minimality in mathcal
H(b) spaces
31.2 Spectral properties of rank-one perturbation of X[sub(b)]*
31.3 Orthonormal bases in mathcal
H(b) spaces
31.4 Riesz sequences of reproducing kernels in mathcal
H(b)
31.5 The invertibility of distortion operator and Riesz bases
31.6 Riesz sequences in H[sup(2)](μ) and in mathcal H(bar b)
31.7 Asymptotically orthonormal sequences and bases in mathcal
H(b)
31.8 Stability of completeness and asymptotically orthonormal basis
31.9 Stability of Riesz bases