Fundamentals of Ionic Liquids :From Chemistry to Applications

Publication subTitle :From Chemistry to Applications

Author: Douglas R. MacFarlane   Mega Kar   Jennifer M. Pringle  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9783527340002

P-ISBN(Paperback): 9783527339990

Subject: O646.1 electrolyte solution theory

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.6.6 Electrochemical Properties

1.6.7 Conductivity and Ion Transport

1.6.8 Computational Techniques

1.7 New Materials Based on ILs

1.8 Nomenclature and Abbreviations

References

Chapter 2 The Structure of Ions that Form Ionic Liquids

2.1 Introduction

2.2 Ionic Interactions and the Melting Point

2.2.1 Thermodynamics of the Melting Point

2.3 Effect of Ion Size and Crystal Packing

2.3.1 Quantifying the Madelung Constant

2.3.2 Computational Prediction of the Melting Point

2.4 Charge Delocalization and Shielding

2.5 Ion Asymmetry

2.6 Influence of Cation Substituents

2.7 Degrees of Freedom and Structural Disorder

2.7.1 Polymorphism

2.8 Short‐Range Interactions – Hydrogen Bonding

2.9 Dications and Dianions

2.10 Tm Trends in Other IL Families

2.11 Concluding Remarks

References

Chapter 3 Structuring of Ionic Liquids

3.1 Introduction

3.2 Ionicity, Ion Pairing and Ion Association

3.3 Short‐Range Structuring

3.4 Structural Heterogeneity and Domain Formation

3.5 Hydrogen Bonding and Structure

3.6 Experimental Probes of Structure

3.7 Simulation Approaches to Understanding Structure

3.8 Structuring at Solid Interfaces

3.9 Ionic Liquid Structure in Confined Spaces

3.10 Impact of Structure on Reactivity and Application

3.11 Concluding Remarks

References

Chapter 4 Synthesis of Ionic Liquids

4.1 Introduction

4.2 Synthesis of ILs

4.2.1 Formation of the Cation: Quaternization/Alkylation

4.2.2 Anion Exchange

4.2.2.1 Metathesis

4.2.2.2 Purification and Challenges of the Metathesis Reaction

4.2.2.3 Ion Exchange

4.2.3 Synthesis of ILs via the Carbonate Route

4.2.4 Flow Reactors

4.2.5 Solvate ILs

4.2.6 Chloroaluminate ILs

4.2.7 Task‐Specific Ionic liquids (TSILs)

4.2.7.1 Alkoxy‐Ammonium ILs

4.2.7.2 Zwitterionic Liquids

4.2.8 One‐Pot Synthesis of Multi‐Ion ILs

4.2.9 Polymer Ionic Liquids (Poly‐ILs)

4.2.10 Protic Ionic Liquids (PILs)

4.2.11 Chiral ILs

4.3 Characterization and Analysis of ILs

4.4 Concluding Remarks

References

Chapter 5 Physical and Thermal Properties

5.1 Introduction

5.2 Phase Transitions and Thermal Properties

5.2.1 Thermal Analysis and the Key Transitions Defining the Liquid State

5.2.2 Glass Transition, Glassy ILs, and the Kauzman Paradox

5.2.3 The Ideal Glass Transition

5.2.4 Influence of Ion Structure on Tg

5.2.5 Solid–Solid Transitions

5.2.5.1 Plastic Crystalline Phases

5.2.5.2 Liquid Crystals

5.2.6 Vaporization

5.2.7 Thermal Decomposition

5.2.8 Thermal Conductivity and Heat Capacity

5.3 Surface and Tribological Properties

5.4 Transport Properties and their Inter‐relationships

5.4.1 Temperature Dependence of Transport Properties

5.4.2 Ionicity and the Walden Plot

5.4.2.1 Modeling the Transport Properties of ILs.

5.5 Properties of Ionic Liquid Mixtures

5.5.1 Thermal Properties

5.5.1.1 Melting Behavior of Mixtures of Salts and the Entropy of Mixing

5.5.1.2 Eutectics

5.5.2 Excess Molar Volume (VE)

5.5.3 Viscosity

5.5.4 Conductivity

5.5.5 Ionicity

5.6 Protic ILs, Proton Transfer, and Mixtures

5.7 Deep Eutectic Solvents and Solvate ILs

5.8 Concluding Remarks

References

Chapter 6 Solvent Properties of Ionic Liquids: Applications in Synthesis and Separations

6.1 Introduction – Solvency and Intermolecular Forces

6.2 Liquid–Liquid Phase Equilibrium

6.2.1 Liquid Solubility, Mixing, and Demixing

6.2.2 Solvent Extraction

6.3 Gas Solubility and Applications

6.3.1 Physical Dissolution of Gases

6.3.2 Chemical Dissolution of Gases

6.4 Synthetic Chemistry in ILs – Selected Examples

6.4.1 Solvent Control of Reactions – Toluene + HNO3

6.4.2 Recovery of Expensive Catalysts: The Heck Reaction

6.4.3 Increased Reaction Rates and Enantiomeric Selectivity in Diels–Alder Reactions

6.4.4 Modulation of the Lewis Acidity of Catalysts: The Friedel–Crafts Reaction

6.4.5 Shift in Equilibrium by Stabilizing the Intermediate Species in the Rate‐Determining Step: the Baylis–Hilman Reaction

6.4.6 Increase in Rate Constant at Low IL Concentrations: Substitution Reactions

6.5 Inorganic Materials Synthesis

6.6 Biomass Dissolution

6.6.1 Cellulose and Lignocellulose

6.6.2 Chitin

6.6.3 Keratin

6.6.4 Wool

6.6.5 Silk

6.7 Concluding Remarks

References

Chapter 7 Electrochemistry of and in Ionic Liquids

7.1 Basic Principles of Electrochemistry in Nonaqueous Media

7.1.1 Redox Potentials

7.1.2 Three‐Electrode Measurements

7.1.3 Potential Scanning Techniques

7.1.4 Reference Electrodes in IL Media

7.2 The Electrochemical Window of Ionic Liquids

7.2.1 The Effect of Impurities

7.2.2 Choice of Working Electrode

7.2.3 Other Factors Affecting the Electrochemical Window

7.3 Redox Processes in ILs

7.3.1 Internal Calibrants

7.3.2 Redox Couples for DSSCs

7.3.3 Metal Bipyridyl Complexes

7.3.4 Organic Redox Reactions

7.3.5 Polyoxometallates

7.3.6 Redox‐Active ILs

7.4 Electrodeposition and Cycling of Metals in ILs

7.4.1 Chloroaluminate‐Based ILs

7.4.2 Zinc

7.4.3 Aluminium Deposition from Air and Water Stable ILs

7.4.4 Lithium

7.4.5 Sodium

7.4.6 Magnesium

7.5 Electrosynthesis in Ionic Liquids

7.5.1 Oxidation Reactions

7.5.1.1 Fluorination

7.5.1.2 Oxidation of Alcohols

7.5.2 Reduction Reactions

7.5.2.1 CO2 Reduction

7.5.2.2 Carbon–Carbon Bond Formation

7.6 Concluding Remarks

References

Chapter 8 Electrochemical Device Applications

8.1 Introduction

8.2 Batteries

8.2.1 Lithium–Ion Battery

8.2.2 High‐Voltage Cathodes

8.2.3 Alternative High‐Energy‐Density Batteries

8.3 Fuel Cells

8.4 Dye‐Sensitized Solar Cells and Thermoelectrochemical Cells

8.5 Supercapacitors

8.6 Actuators

8.7 Concluding Remarks

References

Chapter 9 Biocompatibility and Biotechnology Applications

9.1 Biocompatibility of Ionic Liquids

9.1.1 Chemical Toxicity

9.1.2 Osmotic Toxicity

9.1.3 Biodegradation

9.1.4 Hydrated Ionic Liquids

9.2 Ionic Liquids from Active Pharmaceutical Ingredients

9.2.1 Dual Actives

9.2.2 Patent Matters

9.2.3 Protic Forms of APIs

9.2.4 Antimicrobials

9.2.5 Other Actives – Pesticides and Herbicides

9.3 Biomolecule Stabilization in IL Media

9.3.1 Proteins

9.3.2 DNA and RNA

9.3.3 Buffer ILs

9.3.4 Structural Proteins

9.4 Concluding Remarks

References

Index

EULA

The users who browse this book also browse


No browse record.