Fundamentals of Data Communication Networks

Chapter

1.3.7 Network Access Technique

1.3.8 Media Sharing Technique

1.4 Data Network Architecture

1.4.1 The OSI Protocol Reference Model

1.4.2 The Internet Architecture

1.5 Summary

Chapter 2 Physical Layer

2.1 Introduction

2.2 Classification of Signals

2.3 Periodic Signals

2.4 Fourier Analysis of Periodic Signals

2.4.1 Reconstructing a Function from its Fourier Series

2.4.2 Fourier Analysis of Even and Odd Functions

2.4.3 Parseval's Theorem

2.4.4 Complex Form of Fourier Series

2.5 Fourier Transform of Nonperiodic Signals

2.6 Filters

2.7 Line Coding

2.8 Modulation

2.8.1 Trigonometric Refresher Course

2.8.2 Amplitude Modulation

2.8.2.1 Overmodulation and Distortion

2.8.2.2 Single‐Sideband Suppressed‐Carrier Amplitude Modulation

2.8.3 Frequency Modulation

2.8.4 Phase Modulation

2.9 Sampling Theorem

2.9.1 Analyzing Impulse Train Sampling

2.9.2 Reconstruction of the Continuous‐Time Signal

2.9.3 Statement of the Sampling Theorem

2.9.4 Proof of the Sampling Theorem

2.10 Analog‐to‐Digital Conversion: From PAM to PCM

2.10.1 Pulse Code Modulation

2.10.2 Quantization Noise

2.11 Basic Digital Modulation Schemes

2.11.1 Amplitude‐Shift Keying

2.11.2 Frequency‐Shift Keying

2.11.3 Phase‐Shift Keying

2.12 Media Sharing Schemes

2.12.1 Frequency Division Multiplexing

2.12.1.1 Wavelength Division Multiplexing

2.12.2 Time Division Multiplexing

2.12.2.1 Synchronous Versus Asynchronous TDM

2.13 Modems

2.14 Transmission Media

2.14.1 Twisted Pair

2.14.2 Coaxial Cable

2.14.3 Optical Fiber

2.14.3.1 Fiber Modes

2.14.4 Wireless Medium

2.15 Channel Impairments

2.15.1 Attenuation

2.15.2 Noise

2.15.2.1 Concept of Decibel

2.15.2.2 Signal‐to‐Noise Ratio

2.15.3 Distortion

2.15.4 Equalization

2.16 Summary

Chapter 3 Data Link Layer Protocols

3.1 Introduction

3.2 Framing

3.3 Bit Stuffing

3.4 Flow Control

3.4.1 The Stop‐and‐Wait Protocol

3.4.2 The Sliding Window Flow Control

3.5 Error Detection

3.5.1 Parity Checking

3.5.2 Two‐Dimensional Parity

3.5.3 Cyclic Redundancy Checking

3.6 Error Control Protocols

3.6.1 Stop‐and‐Wait ARQ

3.6.2 Go‐Back‐N ARQ

3.6.3 Selective Repeat ARQ

3.7 Data Link Control Protocols

3.7.1 High‐level Data Link Control

3.7.1.1 HDLC Frame Format

3.7.1.2 Control Field Format

3.7.2 Point‐to‐Point Protocol

3.7.2.1 PPP Components

3.7.2.2 PPP Frame Format

3.7.2.3 PPP Link Control

3.8 Summary

Chapter 4 Multiple Access Schemes

4.1 Introduction

4.2 Multiplexing Schemes Revisited

4.2.1 FDM

4.2.2 TDM

4.2.3 CDM

4.3 Orthogonal Access Schemes

4.3.1 FDMA

4.3.2 TDMA

4.3.3 CDMA

4.4 Controlled Access Schemes

4.4.1 Centralized Polling

4.4.2 Token Passing

4.4.3 Service Policies

4.5 Random Access Schemes

4.5.1 Aloha System

4.5.2 Slotted Aloha

4.5.3 CSMA

4.5.4 CSMA/CD

4.5.4.1 Why Listen While Transmitting in CSMA/CD

4.5.5 CSMA/CA

4.6 Summary

Chapter 5 Local Area Networks

5.1 Introduction

5.2 Ethernet

5.2.1 Ethernet Frame Structure

5.2.2 IEEE 802.3 LAN Types

5.2.3 Ethernet Topologies

5.2.4 LAN Switching

5.2.5 Classification of Ethernet Switching

5.2.6 Frame Forwarding Methods

5.2.6.1 Store‐and‐Forward Switching

5.2.6.2 Cut‐Through Switching

5.2.6.3 Fragment‐Free Switching

5.2.7 Highest Layer used for Forwarding

5.2.7.1 Layer 2 Switching

5.2.7.2 Layer 3 Switching

5.2.7.3 Layer 4 Switching

5.3 Virtual LANs

5.3.1 Advantages of VLANs

5.3.2 Types of VLANs

5.3.2.1 Port‐Based VLAN

5.3.2.2 MAC Address‐Based VLAN

5.3.2.3 Protocol‐Based VLANs

5.3.3 VLAN Tagging

5.3.4 Comments

5.4 Gigabit Ethernet

5.4.1 Frame Bursting

5.5 Wireless LANs

5.5.1 IEEE 802.11b WLAN

5.5.2 IEEE 802.11a WLAN

5.5.3 IEEE 802.11g WLAN

5.5.4 Architecture of the IEEE 802.11 WLAN

5.5.5 Ad Hoc Mode Deployment

5.5.6 Infrastructure Mode Deployment

5.5.7 IEEE 802.11 WLAN Timers

5.5.8 IEEE 802.11 WLAN Operation

5.5.9 DCF Mechanism

5.5.10 PCF Mechanism

5.5.11 Range and Data Rate Comparison in the PCF Environment

5.6 Token Ring Network

5.6.1 Token Frame Fields

5.6.2 Token‐Passing Access Method

5.6.3 Data/Command Frame Fields

5.6.4 Token Access Priority

5.6.5 Logical and Physical Implementation

5.7 Summary

Chapter 6 Network Layer Part I – IP Addressing

6.1 Introduction

6.2 IP Address

6.3 Maximum Transmission Unit

6.4 IP Version 4 Addressing

6.4.1 Class A IPv4 Addresses

6.4.2 Class B IPv4 Addresses

6.4.3 Class C IPv4 Addresses

6.4.4 Class D IPv4 Addresses

6.4.5 Class E IPv4 Addresses

6.5 IP Subnetting

6.6 Variable Length Subnet Mask Networks

6.7 IP Quality of Service

6.8 Operation of the Explicit Congestion Notification

6.9 Address Resolution Protocol

6.9.1 Source and Sink in Same LAN

6.9.2 Source and Sink in Different LANs: Proxy ARP

6.9.3 Source and Sink in Different Remote LANs

6.10 Dealing with Shortage of IPv4 Addresses

6.10.1 Private Internets

6.10.2 Network Address Translation

6.10.3 Classless Inter‐Domain Routing

6.11 IPv6

6.11.1 IPv6 Header

6.11.2 Concept of Flexible Addressing in IPv6

6.12 Summary

Chapter 7 Network Layer Part II – Routing

7.1 Introduction

7.2 Routing Principle

7.3 Routing Algorithms

7.4 Static Versus Dynamic Routing

7.5 Link‐State Versus Distance–Vector Routing

7.6 Flat Versus Hierarchical Routing

7.7 Host‐Based Versus Router‐Intelligent Routing

7.8 Centralized Versus Distributed Routing

7.9 Routing Metrics

7.9.1 Path Length

7.9.2 Reliability

7.9.3 Delay

7.9.4 Bandwidth

7.9.5 Load

7.9.6 Communication Cost

7.10 Flooding Algorithm

7.11 Distance–Vector Routing Algorithms

7.12 Link‐State Routing Algorithms

7.13 Routing Protocols

7.14 Routing Information Protocol

7.15 Routing Information Protocol Version 2

7.16 Open Shortest Path First Protocol

7.16.1 OSPF Routing Hierarchy

7.16.2 OSPF Routers

7.16.3 OSPF Routing

7.16.4 Maintaining the Topological Database

7.17 Advantages of OSPF Over RIP

7.18 The Dijkstra's Algorithm

7.19 Multicast Routing

7.20 Types of Multicast Systems

7.21 Host‐Router Signaling

7.22 Multicast Routing Protocols

7.22.1 Opt‐In Protocols

7.22.2 Opt‐Out Protocols

7.22.3 Source‐Based Tree Protocols

7.22.4 Shared Tree Protocols

7.23 Multicast Forwarding

7.24 Summary

Chapter 8 Transport Layer – TCP and UDP

8.1 Introduction

8.2 TCP Basics

8.2.1 TCP Ports

8.2.2 TCP Sockets

8.2.3 TCP Segment Format

8.3 How TCP Works

8.3.1 TCP Connection Establishment

8.3.2 TCP Connection Release

8.3.3 TCP Connection Management

8.4 TCP Flow Control

8.4.1 Slow Start

8.4.2 Congestion Avoidance

8.4.3 Fast Retransmit

8.4.4 Fast Recovery

8.5 TCP and Explicit Congestion Notification

8.6 The SYN Flood DoS Attach

8.7 UDP

8.8 Summary

Chapter 9 Transport Layer – SCTP and DCCP

9.1 Introduction

9.2 Stream Control Transmission Protocol

9.2.1 Motivation for a New Transport Protocol

9.2.2 Illustration of the HOL Blocking

9.2.3 Summary of Features of SCTP

9.2.4 SCTP Packet

9.2.5 SCTP Header

9.2.6 Association Establishment

9.2.7 Four‐Way Handshake and the SYN Flood DoS Attach

9.2.8 Multihoming

9.2.9 Multistreaming

9.2.10 SCTP Graceful Shutdown Feature

9.2.11 Selective Acknowledgments

9.3 Datagram Congestion Control Protocol

9.3.1 DCCP Packet Structure

9.3.2 DCCP Connection

9.3.3 DCCP Congestion Management

9.3.3.1 CCID 2–TCP‐Like Congestion Control

9.3.3.2 CCID 3–TCP Friendly Rate Control

9.4 Summary

Chapter 10 Application Layer Services

10.1 Introduction

10.2 Dynamic Host Configuration Protocol

10.2.1 DHCP Basics

10.2.2 Discovery Phase

10.2.3 Offer Phase

10.2.4 Request Phase

10.2.5 Acknowledgment Phase

10.2.6 Example of Configuration Process Timeline

10.2.7 Address Lease Time

10.2.8 Static Addresses

10.3 Domain Name System

10.3.1 Structure of the DNS

10.3.2 DNS Queries

10.3.3 Name‐to‐Address Resolution Process

10.3.4 DNS Zones

10.3.5 DNS Zone Updates

10.3.5.1 Full Zone Transfer

10.3.5.2 Incremental Zone Transfer

10.3.5.3 Notify

10.3.6 Dynamic Update

10.3.7 Root Servers

10.4 Summary

Chapter 11 Introduction to Mobile Communication Networks

11.1 Introduction

11.2 Radio Communication Basics

11.3 Model of Radio Communication System

11.4 Radio Wave Propagation

11.4.1 Free‐Space Propagation

11.4.2 Reflection

11.4.3 Diffraction

11.4.4 Scattering

11.5 Multipath Fading

11.6 Introduction to Cellular Communication

11.6.1 Frequency Reuse

11.6.2 Cellular System Architecture

11.7 Clusters and Frequency Reuse

11.8 Co‐Channel Interference

11.9 Cell Splitting

11.10 Introduction to Mobile Cellular Networks

11.11 Mobile Cellular Network Architecture

11.12 Mobility Management: Handoff

11.12.1 Handoff Schemes

11.12.2 Hard Handoff versus Soft Handoff

11.13 Generations of Mobile Communication Networks

11.13.1 First‐Generation Networks

11.13.2 Second‐Generation Networks

11.13.3 Introduction to the GSM Network

11.13.4 GSM Channels

11.13.5 Power Control

11.13.6 Overview of IS‐136 TDMA Networks

11.13.7 Overview of IS‐95 CDMA Networks

11.13.8 Third‐Generation Networks

11.13.9 Fourth‐Generation Networks

11.13.10 Fifth‐Generation Networks

11.14 A Note on Internet‐of‐Things

11.15 Summary

Chapter 12 Introduction to Network Security

12.1 Introduction

12.2 Types of Network Attacks

12.3 Security Services

12.4 Data Encryption Terminology

12.5 Cryptographic Systems

12.5.1 Symmetric Cryptosystems

12.5.2 Public‐Key Cryptosystems

12.5.3 Comparing Symmetric and Public‐Key Cryptosystems

12.5.4 A Hybrid Encryption Scheme

12.6 Technical Summary of Public‐Key Cryptography

12.6.1 Introduction to Number Theory

12.6.2 Congruences

12.6.3 The Square and Multiply Algorithm

12.6.4 Euclid's Algorithm

12.6.5 Extended Euclid's Algorithm

12.6.6 Euler's Phi Function (Euler's Totient Function)

12.6.7 The RSA Algorithm

12.7 Digital Signatures

12.7.1 Generating a Digital Signature

12.7.2 Verifying a Digital Signature

12.8 IP Security Protocols

12.8.1 IPSec Modes

12.8.2 Security Association

12.8.3 Authentication Header

12.8.4 Encapsulating Security Payload

12.8.5 Key Distribution

12.9 Summary

Bibliography

Index

EULA

The users who browse this book also browse


No browse record.