Chapter
1.3.7 Network Access Technique
1.3.8 Media Sharing Technique
1.4 Data Network Architecture
1.4.1 The OSI Protocol Reference Model
1.4.2 The Internet Architecture
2.2 Classification of Signals
2.4 Fourier Analysis of Periodic Signals
2.4.1 Reconstructing a Function from its Fourier Series
2.4.2 Fourier Analysis of Even and Odd Functions
2.4.4 Complex Form of Fourier Series
2.5 Fourier Transform of Nonperiodic Signals
2.8.1 Trigonometric Refresher Course
2.8.2 Amplitude Modulation
2.8.2.1 Overmodulation and Distortion
2.8.2.2 Single‐Sideband Suppressed‐Carrier Amplitude Modulation
2.8.3 Frequency Modulation
2.9.1 Analyzing Impulse Train Sampling
2.9.2 Reconstruction of the Continuous‐Time Signal
2.9.3 Statement of the Sampling Theorem
2.9.4 Proof of the Sampling Theorem
2.10 Analog‐to‐Digital Conversion: From PAM to PCM
2.10.1 Pulse Code Modulation
2.10.2 Quantization Noise
2.11 Basic Digital Modulation Schemes
2.11.1 Amplitude‐Shift Keying
2.11.2 Frequency‐Shift Keying
2.11.3 Phase‐Shift Keying
2.12 Media Sharing Schemes
2.12.1 Frequency Division Multiplexing
2.12.1.1 Wavelength Division Multiplexing
2.12.2 Time Division Multiplexing
2.12.2.1 Synchronous Versus Asynchronous TDM
2.15.2.1 Concept of Decibel
2.15.2.2 Signal‐to‐Noise Ratio
Chapter 3 Data Link Layer Protocols
3.4.1 The Stop‐and‐Wait Protocol
3.4.2 The Sliding Window Flow Control
3.5.2 Two‐Dimensional Parity
3.5.3 Cyclic Redundancy Checking
3.6 Error Control Protocols
3.6.3 Selective Repeat ARQ
3.7 Data Link Control Protocols
3.7.1 High‐level Data Link Control
3.7.1.1 HDLC Frame Format
3.7.1.2 Control Field Format
3.7.2 Point‐to‐Point Protocol
Chapter 4 Multiple Access Schemes
4.2 Multiplexing Schemes Revisited
4.3 Orthogonal Access Schemes
4.4 Controlled Access Schemes
4.4.1 Centralized Polling
4.5 Random Access Schemes
4.5.4.1 Why Listen While Transmitting in CSMA/CD
Chapter 5 Local Area Networks
5.2.1 Ethernet Frame Structure
5.2.2 IEEE 802.3 LAN Types
5.2.3 Ethernet Topologies
5.2.5 Classification of Ethernet Switching
5.2.6 Frame Forwarding Methods
5.2.6.1 Store‐and‐Forward Switching
5.2.6.2 Cut‐Through Switching
5.2.6.3 Fragment‐Free Switching
5.2.7 Highest Layer used for Forwarding
5.2.7.1 Layer 2 Switching
5.2.7.2 Layer 3 Switching
5.2.7.3 Layer 4 Switching
5.3.1 Advantages of VLANs
5.3.2.2 MAC Address‐Based VLAN
5.3.2.3 Protocol‐Based VLANs
5.5.4 Architecture of the IEEE 802.11 WLAN
5.5.5 Ad Hoc Mode Deployment
5.5.6 Infrastructure Mode Deployment
5.5.7 IEEE 802.11 WLAN Timers
5.5.8 IEEE 802.11 WLAN Operation
5.5.11 Range and Data Rate Comparison in the PCF Environment
5.6.2 Token‐Passing Access Method
5.6.3 Data/Command Frame Fields
5.6.4 Token Access Priority
5.6.5 Logical and Physical Implementation
Chapter 6 Network Layer Part I – IP Addressing
6.3 Maximum Transmission Unit
6.4 IP Version 4 Addressing
6.4.1 Class A IPv4 Addresses
6.4.2 Class B IPv4 Addresses
6.4.3 Class C IPv4 Addresses
6.4.4 Class D IPv4 Addresses
6.4.5 Class E IPv4 Addresses
6.6 Variable Length Subnet Mask Networks
6.7 IP Quality of Service
6.8 Operation of the Explicit Congestion Notification
6.9 Address Resolution Protocol
6.9.1 Source and Sink in Same LAN
6.9.2 Source and Sink in Different LANs: Proxy ARP
6.9.3 Source and Sink in Different Remote LANs
6.10 Dealing with Shortage of IPv4 Addresses
6.10.2 Network Address Translation
6.10.3 Classless Inter‐Domain Routing
6.11.2 Concept of Flexible Addressing in IPv6
Chapter 7 Network Layer Part II – Routing
7.4 Static Versus Dynamic Routing
7.5 Link‐State Versus Distance–Vector Routing
7.6 Flat Versus Hierarchical Routing
7.7 Host‐Based Versus Router‐Intelligent Routing
7.8 Centralized Versus Distributed Routing
7.11 Distance–Vector Routing Algorithms
7.12 Link‐State Routing Algorithms
7.14 Routing Information Protocol
7.15 Routing Information Protocol Version 2
7.16 Open Shortest Path First Protocol
7.16.1 OSPF Routing Hierarchy
7.16.4 Maintaining the Topological Database
7.17 Advantages of OSPF Over RIP
7.18 The Dijkstra's Algorithm
7.20 Types of Multicast Systems
7.21 Host‐Router Signaling
7.22 Multicast Routing Protocols
7.22.3 Source‐Based Tree Protocols
7.22.4 Shared Tree Protocols
7.23 Multicast Forwarding
Chapter 8 Transport Layer – TCP and UDP
8.3.1 TCP Connection Establishment
8.3.2 TCP Connection Release
8.3.3 TCP Connection Management
8.4.2 Congestion Avoidance
8.5 TCP and Explicit Congestion Notification
8.6 The SYN Flood DoS Attach
Chapter 9 Transport Layer – SCTP and DCCP
9.2 Stream Control Transmission Protocol
9.2.1 Motivation for a New Transport Protocol
9.2.2 Illustration of the HOL Blocking
9.2.3 Summary of Features of SCTP
9.2.6 Association Establishment
9.2.7 Four‐Way Handshake and the SYN Flood DoS Attach
9.2.10 SCTP Graceful Shutdown Feature
9.2.11 Selective Acknowledgments
9.3 Datagram Congestion Control Protocol
9.3.1 DCCP Packet Structure
9.3.3 DCCP Congestion Management
9.3.3.1 CCID 2–TCP‐Like Congestion Control
9.3.3.2 CCID 3–TCP Friendly Rate Control
Chapter 10 Application Layer Services
10.2 Dynamic Host Configuration Protocol
10.2.5 Acknowledgment Phase
10.2.6 Example of Configuration Process Timeline
10.2.7 Address Lease Time
10.3.1 Structure of the DNS
10.3.3 Name‐to‐Address Resolution Process
10.3.5.1 Full Zone Transfer
10.3.5.2 Incremental Zone Transfer
Chapter 11 Introduction to Mobile Communication Networks
11.2 Radio Communication Basics
11.3 Model of Radio Communication System
11.4 Radio Wave Propagation
11.4.1 Free‐Space Propagation
11.6 Introduction to Cellular Communication
11.6.2 Cellular System Architecture
11.7 Clusters and Frequency Reuse
11.8 Co‐Channel Interference
11.10 Introduction to Mobile Cellular Networks
11.11 Mobile Cellular Network Architecture
11.12 Mobility Management: Handoff
11.12.2 Hard Handoff versus Soft Handoff
11.13 Generations of Mobile Communication Networks
11.13.1 First‐Generation Networks
11.13.2 Second‐Generation Networks
11.13.3 Introduction to the GSM Network
11.13.6 Overview of IS‐136 TDMA Networks
11.13.7 Overview of IS‐95 CDMA Networks
11.13.8 Third‐Generation Networks
11.13.9 Fourth‐Generation Networks
11.13.10 Fifth‐Generation Networks
11.14 A Note on Internet‐of‐Things
Chapter 12 Introduction to Network Security
12.2 Types of Network Attacks
12.4 Data Encryption Terminology
12.5 Cryptographic Systems
12.5.1 Symmetric Cryptosystems
12.5.2 Public‐Key Cryptosystems
12.5.3 Comparing Symmetric and Public‐Key Cryptosystems
12.5.4 A Hybrid Encryption Scheme
12.6 Technical Summary of Public‐Key Cryptography
12.6.1 Introduction to Number Theory
12.6.3 The Square and Multiply Algorithm
12.6.4 Euclid's Algorithm
12.6.5 Extended Euclid's Algorithm
12.6.6 Euler's Phi Function (Euler's Totient Function)
12.7.1 Generating a Digital Signature
12.7.2 Verifying a Digital Signature
12.8 IP Security Protocols
12.8.2 Security Association
12.8.3 Authentication Header
12.8.4 Encapsulating Security Payload