Chapter
1.6.2 Renormalization and critical behaviour
1.7 Renormalization group equations
1.7.1 Renormalization group equations for the bare theory
1.7.2 Callan-Symanzik equations
1.7.3 Renormalization group equations for a massless theory
1.8 Thermodynamics of quantum fields
1.8.1 Field theory at finite physical temperature
1.8.2 Anisotropic lattice regularization
2.1 ø4 model on the lattice
2.1.3 Renormalized quantities
2.2.2 Perturbation theory in the symmetric phase
2.2.3 Perturbation theory in the phase with broken symmetry
2.3 Hopping parameter expansions
2.4 Lüscher-Weisz solution and triviality of the continuum limit
2.4.1 Triviality of four-dimensional ø4 theory
2.4.2 Infinite bare coupling limit
2.5 Finite-volume effects
2.5.1 Perturbative finite-volume effects
3.1 Continuum gauge fields
3.1.2 Abelian gauge fields
3.2 Lattice gauge fields and Wilson's action
3.2.1 Lattice gauge fields
3.2.3 Functional integral
3.2.8 Reflection positivity
3.3.2 Renormalization group
3.4 Strong-coupling expansion
3.4.1 High-temperature expansions
3.4.2 Strong-coupling graphs
3.4.3 Moments and cumulants
3.4.4 Cluster expansion for the free energy
3.4.5 Results from the strong-coupling expansion
3.5 Static quark potential
3.5.1 Wilson loop criterion
3.5.2 Strong-coupling expansion
3.5.3 Roughening transition
3.5.4 Numerical investigations
3.6.2 Strong-coupling expansion
3.6.3 Monte Carlo results
3.7 Phase structure of lattice gauge theory
3.7.2 Abelian gauge groups
3.7.3 Non-Abelian gauge groups
4.1.1 Creation and annihilation operators
4.1.3 Grassmann variables
4.1.4 Polymer representation
4.2.1 Hamiltonian formulation
4.2.2 Euclidean formulation: Wilson action
4.2.3 Reflection positivity of the Wilson action
4.2.4 Wilson fermion propagator and Green functions
4.2.5 Timeslices of Wilson fermions
4.3 Kogut-Susskind staggered fermions
4.3.1 From naive to staggered fermions
4.3.2 Flavours of staggered fermions
4.3.3 Connection to the Dirac-Kahler equation
4.4 Nielsen-Ninomiya theorem and mirror fermions
4.4.1 Doublers in lattice fermion propagators
4.4.2 Doublers and the axial anomaly
4.5.3 Non-perturbative studies
5.1 Lattice action and continuum limi
5.1.2 Quenched approximation
5.1.3 Hopping parameter expansion
5.1.4 Strong gauge coupling limit
5.1.5 Lattice perturbation theory
5.2.1 Hadronic two-point functions
5.2.3 Heavy quark systems
5.3 Broken chiral symmetry on the lattice
5.3.1 Ward-Takahashi identities
5.3.2 PCAC and the quark mass
5.3.6 Current matrix elements
5.4 Hadron thermodynamics
5.4.1 Hadron thermodynamics on the lattice
5.4.2 Deconfinement and chiral symmetry restoration
5.4.3 Non-zero quark number density
6 Higgs and Yukawa models
6.1.2 Lattice perturbation theory
6.1.3 Phase structure and symmetry restoration
6.1.4 Triviality upper bound
6.1.5 Weak gauge coupling limit
6.2 Lattice Yukawa models
6.2.2 The Golterman-Petcher theorem
6.2.3 Numerical simulations, phase structure
6.2.4 Vacuum stability lower bound
7.1 Numerical simulation and Markov processes
7.1.2 Updating with constraints
7.1.4 Improved estimators
7.2 Metropolis algorithms
7.3.1 Heatbath in lattice gauge theories
7.4 Fermions in numerical simulations
7.4.1 Fermion matrix inversion
7.5 Fermion algorithms based on differential equations
7.5.1 Classical dynamics algorithms
7.5.2 Langevin algorithms
7.6 Hybrid Monte Carlo algorithms
7.6.1 HMC for scalar fields
7.6.2 HMC for gauge and fermion fields
8.1 Notation conventions and basic formulas
8.1.3 Lie algebra generators
8.1.4 Continuum gauge fields