Chapter
2.3.1. Data preprocessing
Continuous Wavelet Transform (CWT)
2.4.1. Features in Time Domain
2) Upper and Lower Bound of Histogram
4) Auto-Regression Coefficients
2.4.2. Features in Frequency Domain
3) Frequency parameter indices
4) Higher order spectra (HOS)
2.4.3. Features in Time-Frequency Domain
1) Short Time Fourier Transform (STFT)
FEATURE EXTRACTION AND CLUSTERING
3.2. DEFINITION OF SOME BASIC CONCEPTS
3.2.1. Pattern and Feature Vector
3.3. PARAMETER EVALUATION TECHNIQUE
3.4. PRINCIPAL COMPONENT ANALYSIS (PCA)
3.5. INDEPENDENT COMPONENT ANALYSIS (ICA)
3.8. FISHER DISCRIMINANT ANALYSIS (FDA)
3.9. LINEAR DISCRIMINANT ANALYSIS (LDA)
3.10. GENERALIZED DISCRIMINANT ANALYSIS (GDA)
3.11.2 K-Means Clustering
3.11.3. Hierarchical Clustering
4.2. INDIVIDUAL FEATURE EVALUATION (IFE) BASED ON SPACE DISTRIBUTION
4.4. BACKWARD FEATURE SELECTION
4.5. FORWARD FEATURE SELECTION
4.6. BRANCH AND BOUND FEATURE SELECTION
4.7. PLUS L-TAKE AWAY R FEATURE SELECTION
4.8. FLOATING FORWARD FEATURE SELECTION
4.9. DISTANCE EVALUATION TECHNIQUE
4.10. TAGUCHI METHOD-BASED FEATURE SELECTION
4.11.2. Differences from other Traditional Methods
4.11.3. Simple Genetic Algorithm (SGA)
4.11.4 Feature Selection Using GA
FAULT CLASSIFICATION ALGORITHMS
5.2.1. Linear Separation of Finite Set of Vectors
5.2.2. Perceptron Algorithm
5.2.3 Kozinec’s Algorithm
5.2.4. Multi-Class Linear Classifier
5.3. QUADRATIC CLASSIFIER
5.5. K-NEAREST NEIGHBORS (K-NN)
5.6. SELF-ORGANIZING FEATURE MAP (SOFM) NEURAL NETWORK
5.7. LEARNING VECTOR QUANTIZATION (LVQ) NEURAL NETWORK
5.8. RADIAL BASIS FUNCTION (RBF) NEURAL NETWORK
5.9. ART-KOHONEN NEURAL NETWORK (ART-KNN)
5.10. SUPPORT VECTOR MACHINES (SVMS)
5.10.2. Multi-Class Classification
5.10.3. Sequential Minimal Optimization (SMO)
5.11.1. Building Decision Tree
5.11.2 Pruning Decision Tree
3) Stopping Tree Building
5.12.2. Random Forests Algorithm (RF)
1) Two Randomized Procedures in RF Tree Building
3) Accuracy of RF Depending on Strength and Correlation
5.12.3. Genetic Algorithm
5.13. ADAPTIVE NEURO-FUZZY INTEGRATED SYSTEM (ANFIS)
5.13.1 Classification and Regression Trees (CART)
5.13.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
1) Architecture of ANFIS Based on CART
2) Learning Algorithm of ANFIS
5.14. CASE STUDIES: FAULT DIAGNOSIS OF INDUCTION MOTORS
1) Experiment And Data Acquisition
3) Feature Extraction and Reduction
4) Training and Classification
1) Data Acquisition and Feature Calculation
2) Fault Diagnosis Result and Discussion
3)Feature Selection and Classification
DECISION FUSION ALGORITHMS
6.2. FUSION APPLICATION AREAS
6.3. FUSION ARCHITECTURES
6.3.2. Feature-Level Fusion
6.3.3. Decision-Level Fusion
6.4. FUSION TECHNIQUES AT DECISION-LEVEL
6.4.2. Bayesian Belief Fusion
6.4.3. Behavior Knowledge Space (BKS)
6.4.4. Dempster-Shafer Theory
6.4.5. Multi-Agent Fusion
6.4.6. Decision Templates (DTS)
6.5. CLASSIFIER SELECTION
6.5.1 2-Classifier Correlation Analysis
6.5.2. Multi-Classifier Correlation Analysis
6.6. DECISION FUSION SYSTEM
6.6.1. Level 1 To Level 3: Preparation for Decision Fusion
6.6.2. Level 4: Data Fusion at Decision Level
6.6.3. Level 5: Classifier Selection
6.6.4. Level 6: Decision Fusion
6.7 FAULTS DIAGNOSIS OF TEST-RIG MOTORS USING FUSION TECHNIQUES
6.7.2. Feature Calculation and Classification
6.7.3. Classifiers Selection and Fusion
6.7.4.Classifiers Fusion Comparison
6.8. FAULTS DIAGNOSIS OF ELEVATOR MOTOR USING FUSION TECHNIQUES
6.8.2. Feature Calculation and Classification
6.8.3. Classifiers Fusion
6.9. DECISION-LEVEL FUSION DIAGNOSIS USING TRANSIENT CURRENT SIGNAL
6.9.1. Experiments and Data Acquisition
6.9.2. Signal Preprocessing and Wavelet Transform
6.9.3. Features Calculation and Classification;
6.9.4. Fusion Performance Evaluation
FAULT PROGNOSIS ALGORITHMS
7.2. PROGNOSIS APPROACHES
7.2.1. Rule-Based Approaches
7.2.2. Fuzzy Logic Approaches
7.2.3. Model-Based Approaches
7.2.4. Trend-Based Evolutionary Approach
7.2.5. Data-Driven Model Based Approach
2) Support Vector Regression (SVR)
(1) Linear Support Vector Regression
2) Nonlinear Support Vector Regression
7.2.6. State Estimator-Based Prognosis
7.2.7. Statistical Reliability and Usage-Based Approaches
7.2.8. Adaptive Prognosis
7.2.9. Data Miningand Automated Rule Extraction
7.2.10. Distributed Prognosis System Architecture
1) Spall Initiation Model
2) Spall Progression Model
7.3.3. Low-Methane Compressor Prognosis
7.3.4. Machine-Tool Prognosis