Chapter
2.2. Electric Double Layers and Water Bridge Model
3. COMPONENTS OF ELECTRORHEOLOGICAL FLUIDS
4. DESIGN AND PREPARATION OF ER MATERIALS
4.1. ER Materials Based on Molecular and Crystal Structure Design
4.1.1. Inorganic ER Materials
Mesoporous Molecular Sieve
4.1.2.Organic ER Materials
Polymeric Semiconducting Material
(2) Polymer with Polar Groups
4.2. ER Materials Based on Nanocomposite and Hybrid Design
4.2.1. MMT Based Nanocomposite ER Materials
Polyaniline/MMT Nanocomposite
Nanocrystallite Coated MMT Nanocomposite
4.2.2.Kaolinite Based Nanocomposite ER Materials
Polar Liquid Interacted Kaolinite ER Material
TiO2 Nanocrystal Coated Kaonite ER Material
Polysaccharide/Kaolinite Hybrid ER Material
4.2.3.Mesoporous Silica Based Nanocomposite
4.3. Molecular-Scale Organic/Inorganic Hybrids
4.3.1.Polysaccharide / Titania Hybrid Gel
4.3.2.Glycerol/Surfactant/Titania Hybrid Gel
Chapter 2 DESIGN AND MANUFACTURING OF ELECTRORHEOLOGICAL DEVICES
1. ELECTRORHEOLOGICAL SELF-COUPLED DAMPERS
1.2. Working Principle of Self-Coupled ER Dampers
1.3.The First Generation Product: Adaptive ER-piezoceramic Damper
1.3.1.Spring-Direct-Pressing Type Damper [101]
1.3.2. Wedge-Push Type Damper [102]
1.3.3.Vibration Suppression Properties
1.4. The Second Generation Product: Self-Coupled ER Damper
1.4.1. Configuration of the Self-Coupled ER Damper [106]
1.4.2. Vibration Properties of Dampers [107]
1.4.3.Theoretical Model for the Self-Coupled ER Damper [107]
2. FLEXIBLE SOUND-TUNABLE ER COMPOSITE LAYER
2.2. Sound Tunable Characteristics of Flexible ER Layer [131]
2.3. Vibration-Radiation Model of the ER Layer [134]