Chapter
Chapter 1. Idempotents and traces
1.1. Primitive idempotents for the symmetric group
1.2. Primitive idempotents for the Brauer algebra
1.3. Traces on the Brauer algebra
1.5. Action of the symmetric group and the Brauer algebra
1.6. Bibliographical notes
Chapter 2. Invariants of symmetric algebras
2.1. Invariants in type 𝐴
2.2. Invariants in types 𝐵,𝐶 and 𝐷
2.3. Symmetrizer and extremal projector
2.4. Bibliographical notes
Chapter 3. Manin matrices
3.1. Definition and basic properties
3.2. Identities and invertibility
3.3. Bibliographical notes
Chapter 4. Casimir elements for 𝔤𝔩_{𝔑}
4.1. Matrix presentations of simple Lie algebras
4.2. Harish-Chandra isomorphism
4.3. Factorial Schur polynomials
4.5. A general construction of central elements
4.7. Permanent-type elements
4.10. Bibliographical notes
Chapter 5. Casimir elements for 𝔬_{𝔑} and 𝔰𝔭_{𝔑}
5.1. Harish-Chandra isomorphism
5.2. Brauer–Schur–Weyl duality
5.3. A general construction of central elements
5.4. Symmetrizer and anti-symmetrizer for 𝔬_{𝔑}
5.5. Symmetrizer and anti-symmetrizer for 𝔰𝔭_{𝔑}
5.6. Manin matrices in types 𝐵, 𝐶 and 𝐷
5.7. Bibliographical notes
Chapter 6. Feigin–Frenkel center
6.1. Center of a vertex algebra
6.2. Affine vertex algebras
6.3. Feigin–Frenkel theorem
6.4. Affine symmetric functions
6.5. From Segal–Sugawara vectors to Casimir elements
6.6. Center of the completed universal enveloping algebra
6.7. Bibliographical notes
Chapter 7. Generators in type 𝐴
7.1. Segal–Sugawara vectors
7.2. Sugawara operators in type 𝐴
7.3. Bibliographical notes
Chapter 8. Generators in types 𝐵, 𝐶 and 𝐷
8.1. Segal–Sugawara vectors in types 𝐵 and 𝐷
8.2. Low degree invariants in trace form
8.3. Segal–Sugawara vectors in type 𝐶
8.4. Low degree invariants in trace form
8.5. Sugawara operators in types 𝐵, 𝐶 and 𝐷
8.6. Bibliographical notes
Chapter 9. Commutative subalgebras of 𝑈(𝔤)
9.1. Mishchenko–Fomenko subalgebras
9.2. Vinberg’s quantization problem
9.3. Generators of commutative subalgebras of 𝑈(𝔤𝔩_{𝔑})
9.4. Generators of commutative subalgebras of 𝑈(𝔬_{𝔑}) and 𝔘(𝔰𝔭_{𝔑})
9.5. Bibliographical notes
Chapter 10. Yangian characters in type 𝐴
10.2. Dual Yangian for 𝔤𝔩_{𝔑}
10.3. Double Yangian for 𝔤𝔩_{𝔑}
10.4. Invariants of the vacuum module over the double Yangian
10.5. From Yangian invariants to Segal–Sugawara vectors
10.6. Screening operators
10.7. Bibliographical notes
Chapter 11. Yangian characters in types 𝐵, 𝐶 and 𝐷
11.2. Dual Yangian for 𝔤_{𝔑}
11.3. Screening operators
11.4. Bibliographical notes
Chapter 12. Classical 𝒲-algebras
12.1. Poisson vertex algebras
12.3. Chevalley projection
12.4. Screening operators
12.5. Bibliographical notes
Chapter 13. Affine Harish-Chandra isomorphism
13.1. Feigin–Frenkel centers and classical 𝒲-algebras
13.2. Yangian characters and classical 𝒲-algebras
13.3. Harish-Chandra images of Sugawara operators
13.4. Harish-Chandra images of Casimir elements
13.5. Bibliographical notes
Chapter 14. Higher Hamiltonians in the Gaudin model
14.1. Bethe ansatz equations
14.2. Gaudin Hamiltonians and eigenvalues
14.3. Bibliographical notes
Chapter 15. Wakimoto modules
15.1. Free field realization of 𝔤𝔩_{𝔑}
15.2. Free field realization of 𝔬_{𝔑}
15.3. Free field realization of 𝔰𝔭_{2𝔫}
15.4. Wakimoto modules in type 𝐴
15.5. Wakimoto modules in types 𝐵 and 𝐷
15.6. Wakimoto modules in type 𝐶
15.7. Bibliographical notes