Chapter
2.1. Key Parasites Reported to Cause Clinical Problems
2.1.1. Baylisascaris schroederi
2.1.1.3. The Disease: Baylisascariasis
2.1.1.5. Treatment and Control
2.1.3. Ixodidae (Hard Ticks)
2.2. Protists: An Emerging Issue?
3. Conclusions and a Perspective on Future Research
Chapter Two: The Evolutionary Biology, Ecology and Epidemiology of Coccidia of Passerine Birds
2. The Taxonomy and Life Cycle of Coccidia
3. Coccidia and Passerine Health
4. Epidemiology of Coccidia in Wild Passerines
4.1. Diurnal Shedding Patterns
Chapter Three: Monogenean Parasite Cultures: Current Techniques and Recent Advances
2. Establishing Monogenean Infections
2.1. Collection of Infected Hosts
2.2. Cohabitation of Susceptible Hosts With Infected Stock
2.3. Cohabitation of Susceptible Hosts With Monogenean Eggs and Oncomiracidia
2.4. Transfer of Adult Parasites to New Host Individuals
3. Maintaining Monogenean Cultures
3.3. Egg Maintenance and Hatching
3.4. Oncomiracidia Collection and Infection Success
3.5. Time to Sexual Maturity and Assessment of Adult Infection Intensity
4. Hyperparasite Cultures
6. Amphibian Monogenean Cultures
7. Troubleshooting and Virulence
8. Animal Ethics and Biosecurity
9. Further Considerations and Conclusive Comments
Chapter Four: Molecular Epidemiology of Anisakis and Anisakiasis: An Ecological and Evolutionary Road Map
1.1. Basic Biology of Anisakis spp.
2. When Can an Anisakis Parasite Be Considered as a 'Biological Species'?
2.1. What Types of Markers Resolve the Identification of Anisakis spp.?
2.1.1. Genotyping Approach From Multilocus Allozyme Electrophoresis (MAE)
2.1.2. Nuclear Genotyping Approach From Internal Transcribed Spacers of rDNA (ITS rDNA)
2.1.3. Nuclear Genotyping From EF1 α-1 nDNA
2.1.4. Nuclear Genotyping From Microsatellites
2.1.5. Mitochondrial DNA Loci
2.2. What Types of Markers Are Used in the Study of Hybridization and Introgression Between Cryptic Species of Anisakis?
3. How Many Valid Species Are in the Genus Anisakis?
3.1. Anisakis Species Included in Clade 1
3.1.1. A. simplex (s.s.) (See Nascetti et al., 1986)
3.1.2. A. pegreffii Campana-Rouget and Biocca, 1955
3.1.3 A. berlandi (See Mattiucci et al., 2014a) (5A. simplex C of Mattiucci et al., 1997)
3.2. Anisakis spp. Included in Clade 2
3.2.1. A. ziphidarum Paggi, Nascetti, Webb, Mattiucci, Cianchi, and Bullini, 1998
3.2.2. A. nascettii Mattiucci, Paoletti, and Webb, 2009
3.3. Anisakis Species Included in Clade 3
3.3.1. A. physeteris Baylis, 1920
3.3.2. A. brevispiculata Dollfus, 1966
3.3.3. A. paggiae Mattiucci, Nascetti, Dailey, Webb, Barros, Cianchi, and Bullini, 2005
3.3.4. Anisakis sp. 2 (See Mattiucci et al., 2014b)
3.4. A. typica (Diesing, 1860)
4. Reconciling Molecular and Morphological Results
4.1. Diagnostic Morphological Features at Clade Level
4.2. Diagnostic Morphological Features Between 'Cryptic' Species of the Genus Anisakis
4.3. Larval Morphological Features in the Species of Genus Anisakis
5. How Does Anisakis spp. Diversity Vary Across Host Species?
5.1. Host Preference vs Definitive Hosts
5.2. Host Preference vs Intermediate/Paratenic Hosts
6. Molecular Epidemiology of Anisakis spp. in Fisheries
6.1. What Drivers Shape the Distribution of Anisakis spp. in Wild Fisheries?
6.1.1. Temperature, Salinity, and Oceanographic Conditions
6.1.2. The Fishing Ground
6.1.3. Fish Host Body Size
6.1.4. Host Population Structure, Demography, and Migration Routes
6.2. Anisakis spp. in Farmed Fish
7. Do Anisakis spp. Always Occupy the Same Site in Fish?
7.1. Detection of Anisakis spp. Larvae in Fishery Products
7.2. Site of Infection by Anisakis spp. Larvae in Fish
7.3. Intra Vitam and Post Mortem Larval Migration
8. Human Anisakiasis: Which Are the Anisakis spp. Infective to Humans?
8.1. The Zoonotic Role of Anisakis spp.
8.2. Molecular Epidemiology of Human Anisakiasis
8.3. Clinical Manifestation of Human Anisakiasis Caused by A. simplex (s.s.) and A. pegreffii
8.4. Diagnosis of Anisakis spp. in Humans
8.4.1. Histological Diagnosis
8.4.2. Molecular Diagnosis
8.4.3. Serodiagnosis of Human Anisakiasis and IgE Sensitization
9. What Key Questions for Future Research Challenges?
9.1. What Molecular/Genetic Tools to Use in Future Studies of Anisakis?
9.2. What Approaches for Future Analysis of Distribution and Epidemiology?
9.2.1. At Fisheries Level
9.2.3. At the Ecosystem Level
Chapter Five: Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease
2. Evolution of the Triatominae: From Predators to Blood Feeders
2.1. Are the Triatominae Monophyletic, Paraphyletic, or Polyphyletic?
2.2. Putative Synapomorphies of the Triatominae
2.3. Evolution of Haematophagy in the Triatominae
3. Systematics of the Triatominae
3.1.1. Overview: Triatomine Systematics From De Geer to the 21st Century
3.1.2. Lent and Wygodzinsky: Setting the Standard
3.2. Molecular Systematics
3.2.1. The Pioneers From Allozymes to DNA
3.2.2. Genomics, Transcriptomics, and Other New Tools
3.3. Uncovering and Sorting Out Hidden Diversity: Species Complexes
3.3.1. The R. prolixus+R. robustus Complex
3.3.2. The T. dimidiata Complex
3.3.3. The T. sordida Complex
3.3.4. The T. brasiliensis Complex
3.3.5. Other Triatoma Complexes and Subcomplexes
3.4. Taxonomy: Describing and Sorting Out Newly Uncovered Diversity
3.4.1. Mepraia parapatrica
3.4.2. New Triatoma Species
3.4.3. Panstrongylus: Two New Species and a Shifting Synonym
3.4.4. Revalidated, New, and Dubious Rhodnius Species
3.4.5. Strengthening Triatomine Taxonomy
4. Biogeography of the Triatominae
4.1. The Tribe Triatomini
4.1.1. The T. dispar Lineage
4.1.2. The 'North American' Lineage
4.1.2.1. The Hermanlentia+Mepraia Clade
4.1.2.2. The (Truly) North American Clade
4.1.2.3. The North-Mesoamerican+Old World Clade
4.1.2.4. The Antillean Triatoma+Panstrongylus Clade
4.1.3. The South American Lineage
4.1.3.1. The Atlantic Forest Triatoma Clade
4.1.3.2. The Eratyrus Clade
4.1.3.4. The T. infestans Clade
4.1.3.5. The T. brasiliensis Clade
4.1.3.6. The T. sordida Clade
4.1.3.6.1. The T. rubrovaria Species Group
4.1.3.6.2. The T. pseudomaculata Species Group
4.1.3.6.3. The T. sordida Species Group
4.2.1. The R. pallescens Lineage: The Trans-Andean Rhodnius
4.2.2. The R. pictipes Lineage
4.2.3. The R. robustus Lineage, Including the Psammolestes
4.3.3. The Alberproseniini
5. Closing Thoughts and Conclusions
Chapter Six: Expanding the Vector Control Toolbox for Malaria Elimination: A Systematic Review of the Evidence
2.1. Eligibility Criteria
2.2. Search Strategy and Selection Criteria
2.4. Quality of Systematic Reviews and Risk of Bias in Phase III Studies
3.1. VCTs With a Recent Systematic Review
3.1.1. Larval Source Management
3.1.2. Mosquito-Proofed Housing
3.1.3. Topical Repellents
3.2. Other VCTs With a Phase III Evaluation
3.2.1. Insecticide-Treated Clothing and Blankets
3.2.2. Insecticide-Treated Hammocks
3.2.3. Insecticide-Treated Livestock
3.2.4. Spatial Repellents
3.3. VCTs With No Phase III Evaluation