Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization

Author: Saxena   Vimal;Krief   Michel;Adam   Ludmila  

Publisher: Elsevier Science‎

Publication year: 2018

E-ISBN: 9780128123324

P-ISBN(Paperback): 9780128122044

Subject: P584 petrophysical and rock chemistry

Keyword: 地球物理学,天文学、地球科学,石油、天然气工业

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support.

The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth.

  • Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies
  • Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation
  • Covers the potential advantages of acoustic-base

Chapter

Preface

Acknowledgments

Chapter 1: Introduction

1.1. General Introduction

1.2. Understanding Isotropy

1.3. Elasticity and Displacement

1.3.1. Stress Tensor

1.3.2. Strain Tensor

1.3.3. Constitutive Equations of Linear Elasticity

1.3.4. Isotropic Linear Elasticity

1.4. Elastic Constants and Interrelation

1.5. Equation of Motion in Isotropic Media

1.5.1. Plane Wave in 3-D Space

1.5.2. Simplified 1-D Wave Equation

1.6. Equation of Motion in Anisotropic Media

1.6.1. Generalized Plane Wave in Anisotropic Media

1.6.2. Plane Wave in Transversely Isotropic Media

References

Chapter 2: Introduction to Wave Propagation

2.1. Wave Propagation in Poroelastic Media

2.1.1. Biot's High-Frequency Limit

2.1.2. Biot's Low-Frequency Limit: Purely Elastic Wave

2.1.3. Biot's Low-Frequency Limit: Viscoelastic Dissipation

Assumptions & Limitations: Biot's Theory

2.2. Acoustic Dispersion and Critical Frequency

2.2.1. Qualitative Discussion

2.2.2. General Quantitative Solution

2.2.2.1. Compressional wave

2.2.2.2. Shear wave

2.3. Geerstma-Smit Approximation

Assumptions Geerstma-Smit Approximation

2.4. Gassmann's Theory of Fluid-Saturated Media

Assumptions & Limitations: Gassmann's Theory

2.5. Biot's Theory and Gassmann's Prediction

2.6. Wavetrain Propagation in a Borehole

2.6.1. Snell's Law

2.6.2. Acoustic Modes in a Borehole

2.6.3. Leaky Modes

2.6.4. Pseudo-Rayleigh Waves

References

Chapter 3: Borehole Acoustic Logging

3.1. Acoustic Tool Principle (Monopole)

3.1.1. Single Transmitter Monopole Tool

Limitations of the Single Transmitter Monopole Tool

3.1.2. Borehole Compensated Sonic

Limitations & Advantages of Monopole BHC Measurement

3.1.3. Long-Spaced Sonic and BHC

Limitations & Advantages of LSS & BHC Measurements

3.1.4. Array Sonic Tool

Limitations & Advantages of Array Sonic Measurement

3.2. Waveforms in Monopole Tool

3.2.1. Waveforms in a Fast Formation

3.2.2. Waveforms in a Slow Formation

3.3. The Tool Principle (Dipole Acoustic Tool)

Limitations & Advantages of Dipole Sonic Measurement

3.4. Further Tool Advancements

3.4.1. Sonic Scanner

Limitations & Advantages of Sonic Scanner Measurement

3.4.2. Quadrupole Sonic LWD Tool

Limitations & Advantages of Sonic Quadrupole Measurement

3.4.3. Seismic While Drilling

3.5. Borehole Waveform Processing

3.5.1. First-motion Detection

3.5.2. Semblance Correlation

3.5.3. Slowness-Time-Coherence

3.5.3.1. STC concept

3.5.3.2. Dispersion (bias) correction

3.5.3.3. Dispersion correction: weighted spectral average concept

3.5.4. Dispersive Processing

3.5.4.1. Flexural dispersion characteristics

3.5.4.2. Dispersive analog of STC

3.5.4.3. Dispersive STC (DSTC)

3.5.5. QC Techniques

3.5.5.1. Slowness-frequency projection

3.5.5.2. Error bars (Cramer-Rao bounds)

3.6. Enhanced Vertical Resolution (Multi-Shot Semblance)

3.7. Depth of Investigation

3.7.1. Source-Receiver Spacing and Alteration

3.7.2. Measurement Frequency

3.7.3. Source Typing

3.8. Altered Zone: Concluding Comment

References

Chapter 4: Rock Physics Models

4.1. General Assumptions and Implications

4.2. Dry Compressibility: Micromechanical Consideration

4.3. Saturated Rock: Biot-Gassmann and Brown-Korringa Models

4.4. Composite Media: Generalized Gassmann's Model

4.5. Composite Porous Rock: Elastic Bounds

4.5.1. Voigt-Reuss Bounds

4.5.2. Voigt-Reuss-Hill (VRH) Approximation

4.5.3. Hashin-Shtrikman (HS) Bounds

4.5.4. Beran-Molyneux-McCoy and McCoy-Silnutzer Bounds

4.5.5. Miller's Bound

4.6. Kuster-Toksoz Effective Medium Model

Advantages Kuster-Toksoz Model

4.7. Self-Consistent Theory of Effective Composites

4.7.1. OConnell and Budiansky Approximation

4.7.2. Wu's Two-Phase Approximation

4.7.3. Berryman's Scheme

Advantages & Limitations: Self-Consistent Models

4.8. Differential Effective Medium Theory

Advantages & Limitations: Differential Effective Medium Theory

4.9. DEM Analytical Approximation

4.9.1. Analytical DEM (Li and Zhang)

4.9.2. Analytical Approximation (Berryman-Pride-Wang)

4.10. Modified DEM Model

Advantages Modified-DEM Theory

4.11. Elasticity of Granular Media: Contact Consideration

4.11.1. Hertz-Mindlin Model

4.11.2. Digby Model

4.11.3. Walton Model

4.11.4. Coordination Number

4.12. Modified HS Bound: Contact Consideration

4.12.1. Modified Lower HS Bound (Soft-Sand Model)

4.12.2. Modified Upper HS Bound (Stiff-Sand Model)

4.13. Elasticity of Granular Media: Cemented Contact Model

4.13.1. Contact-Cement Model

4.13.2. Constant-Cement Model

Advantages & Limitations: Contact Models

4.14. Elasticity of Porous Media: Empirical Considerations

4.14.1. Murphy-Schwartz-Hornby Correlation

4.14.2. Krief Model

4.14.3. Extended Biot-Gassmann-Krief (BGK) Model

4.14.4. Critical and Consolidation Porosity Model

References

Chapter 5: Sonic Porosity-Lithology

5.1. Velocity: Semi-Empirical Relations

5.1.1. Wyllie Time-Average Concept

5.1.2. Tixier Compaction Correction

5.1.3. Raymer-Hunt-Gardner (RHG) Relation

5.1.4. Tosaya Velocity-Porosity-Clay Equation

5.1.5. Castagna Velocity-Porosity-Clay Relationship

5.1.6. Castagna Polynomial Regression for Clean Lithology

5.1.7. Han Velocity-Porosity-Clay Equation

5.1.8. Vernik Velocity-Porosity Classification Model

5.1.9. Krief Velocity-Porosity Model

5.1.10. Velocity Semi-Empiricism: Concluding Comments

5.2. Vp/Vs: Semi-Empirical Relation

5.3. Critical Porosity

5.4. Velocity-Porosity in Carbonates

5.5. Velocity-Stress Interrelation

5.5.1. Siliciclastic Rock

5.5.1.1. Velocity-stress empirical law

5.5.1.2. Vp/Vs-stress in an under-compacted reservoir

5.5.2. Carbonate Rocks

5.6. Velocity-Density Interrelation

5.6.1. Empirical Model

5.6.2. Krief Model

5.7. Velocity-Porosity: Effective Medium Implication

5.7.1. Single Porosity Model

5.7.2. Double Porosity Model

References

Chapter 6: Stoneley Permeability

6.1. Borehole Stoneley Wave

6.1.1. Propagation Concept

6.1.2. Stoneley Permeability Correlation

6.2. Biot's Low-Frequency Domain

6.3. Theoretical Modeling

6.3.1. White's Model

Key Assumptions: White's Model

6.3.2. Biot's Solution

6.4. Lab and Field Results

6.4.1. Lab versus Theory

6.4.2. Field Study

6.5. Quantitative Permeability Index

6.6. Other Effects on Stoneley Propagation

6.6.1. Tool Effect

6.6.2. Mud-cake Effects

6.6.2.1. Dual frequency approach

6.6.2.2. Detailed mathematical model

6.7. Sensitivity of Stoneley Permeability

6.8. Petrophysical Limitation

6.9. Practical Problems and Solutions

6.9.1. Mud Slowness and Attenuation

6.9.2. Elastic Properties Input

6.9.3. Stoneley Attenuation

6.9.4. Borehole Irregularity

6.9.5. Resolution and Depth of Investigation

References

Chapter 7: Acoustic Saturation

7.1. Fluid Effect on Acoustic Response

7.1.1. Biot's Formulation (Viscoelastic Media)

7.1.2. Gassmann's Model

7.1.3. Squirt-Flow Model

7.1.4. Squirt Model—Intermediate Frequency

7.2. Fluid Substitution Modeling

7.2.1. Homogeneous Isotropic Media

Assumptions

7.2.2. Impact of Pore Geometry on Fluid Substitution

7.2.3. Substitution in Laminated Shaly Sand

7.2.4. Fluid Substitution Without Shear

7.2.5. Key Pointers in Fluid Substitution

7.3. Fluid Substitution in Anisotropic Rock

7.3.1. Anisotropic Gassmann's Equation

7.3.2. Anisotropic Brown-Korringa Equation

7.3.3. Anisotropic VTI Rock Mavko-Bandyopadhyay Equation

7.3.4. Anisotropic HTI Rock, Gurevich Equation

7.4. Acoustics of Partial/Patchy Saturation

7.5. Modulus Decomposition

7.5.1. Concept for Clean Formation

7.5.2. Concept for Composite Rock

7.5.3. Application to Shaly Sand

7.5.4. Application to Carbonate Composite

References

Chapter 8: Anisotropy Evaluation

8.1. Anisotropy Basics

8.2. Thomsen Parameters for Weak Elastic Anisotropy

8.3. Extended Thomsen Model: Strong Anisotropy

8.4. Thomsen Parameters for Finely Layered VTI Media

8.4.1. Special Case

8.5. Fluid Effect on Thomsen Parameter and Anisotropic Gassmann's Equation

8.6. Stress-Induced Anisotropy

8.6.1. Uniaxial Small Stress on an Isotropic Elastic Medium

8.6.2. Triaxial and Larger Stress on Isotropic Media

8.7. Shale Anisotropy

8.7.1. Clay Anisotropy VTI Model

8.7.2. Anisotropy in Dry Clay

8.7.3. Effect of Fluids in Shales

8.7.4. Effect of Kerogen on Velocity Anisotropy

8.8. Anisotropic Consideration of Borehole Acoustic Mode

8.8.1. Crossed-Dipole Anisotropy Analysis

8.8.2. Fracture Analysis

8.8.3. Stress Analysis

8.9. Intrinsic and Stress-Induced Anisotropy Differentiation

8.10. Anisotropy Analysis Through Stoneley Waves

8.10.1. Anisotropy Estimation

8.10.2. Deviated Borehole: Comparison With Cross-Dipole

8.11. Anisotropic Consideration in an Inclined Borehole

References

Chapter 9: Rock Strength And Stress Analysis

9.1. In-Situ Stress: A Fundamentals

9.2. Stress Evaluation: Process Consideration

9.2.1. Burial Process

9.2.2. Uplift Process

9.2.3. Tectonic Process

9.2.4. Pore Pressure Change

9.2.5. Other Processes

9.3. Stress Evaluation: Other Numerical Estimation

9.3.1. Depth Trends

9.3.2. Poroelastic Model

9.3.3. Other Equations

9.4. Static Stress-Strain and Deformation

9.5. Static And Dynamic Moduli

9.6. Rock Strength and Failure

9.6.1. Coulomb Failure Model

9.6.2. Mohr-Coulomb Failure Criterion

9.6.3. Griffith Failure Criterion

9.6.4. Mogi's Empirical Criterion

9.6.5. Hoek-Brown Failure Criterion

9.6.6. Modified Lade Failure Criterion

9.6.7. Modified Wiebols-Cook Failure Criterion

9.6.8. Drucker-Prager Failure Criterion

9.7. Empirical Rock Strength

9.7.1. Sandstone

9.7.2. Shales

9.7.3. Carbonate

9.8. Pore Pressure Evaluation

9.8.1. Geo-Pressure Concept

9.8.1.1. Hydrostatic pressure

9.8.1.2. Lithostatic pressure

9.8.1.3. Effective stress

9.8.2. Hottmann And Johnson's Method

9.8.3. Eaton's Method of Pressure Prediction

9.8.3.1. Resistivity approach

9.8.3.2. Sonic velocity approach

9.8.3.3. Modified Eaton's method

9.8.4. Bower's Sonic Method

9.8.5. Miller's Sonic Method

9.8.6. Tau Model

9.8.7. Porosity Dependent Pressure Prediction

9.9. Pore Compressibility

9.9.1. Theoretical Model

9.9.2. Core Measurement: Uniaxial Loading

9.9.3. Log-Derived PVC

References

Chapter 10: Core Elasticity Measurements

10.1. Scaling of Elastic Properties

10.2. Experimental Rock Elastic Properties

10.2.1. Porosity, Pore Geometry, and Clays

10.2.2. Confining and Fluid Pressures

10.2.3. Fluids

Fluid type and saturation

10.2.4. Frequency Dependence of Elastic Waves

10.2.5. Temperature Dependence of Elastic Waves

10.2.6. Elastic Wave Anisotropy

10.2.7. Rock-Fluid Interactions

10.3. Experimental Systems for Rock Elasticity Measurement

10.3.1. Ultrasonic Transducers

10.3.2. Resonance Techniques

10.3.3. Stress-Strain Measurements at Seismic Frequencies

10.4. Other Experimental Elastic Developments

10.4.1. Multipath Transducer Systems

10.4.2. Noncontacting Laser Ultrasonic System

10.4.3. Scanning Acoustic Microscopy

10.4.3.1. Atomic-force acoustic microscopy

10.4.4. Digital Rocks

10.4.5. High-Pressure Experimental System Considerations

10.5. Limitations and Advantages of Elastic Core Measurements

References

Chapter 11: Casedhole Acoustics

11.1. Cement Evaluation: Sonic Logging

11.1.1. CBL-VDL Sonic Tool

11.1.2. Compensated Cement Bond Sonic Tool (CBT)

11.2. Cement and Casing Evaluation: Ultrasonic Logging

11.2.1. Ultrasonic Cement Evaluation Tool

11.2.1.1. Micro-annulus effect

11.2.1.2. Additional interface effect

11.2.1.3. Gas effect

11.2.2. Acoustic Televiewer/Scanner

11.3. New Cement Evaluation Concept: Flexural Mode

11.3.1. Flexural and TIE Mode

11.3.2. Interpreting Attenuation, Impedance

11.3.3. Interpreting Third-Interface Echo (TIE)

11.4. Casedhole Acoustics for Formation Evaluation

11.4.1. Wave Propagation in Casedhole

11.4.2. Dipole in Casedhole

11.4.2.1. Frequency effect

11.4.2.2. Tool eccentricity effect

11.4.3. Casedhole Hydrocarbon Interpretation

References

Chapter 12: Rock Physics Workflow and Example

12.1. Composite Matrix Elastic Properties

12.2. Mixed Fluid Bulk Modulus

12.3. Velocity/Elastic Moduli Prediction (Empirical)

12.3.1. Siliciclastics: Water-Saturated Vp and Vs From Porosity, Clay, and Effective Pressure

12.3.2. Siliciclastics: Water-Saturated Vs from Vp

12.3.3. Siliciclastics: Dry Frame Modulus from Porosity

12.3.4. Siliciclastics: Dry Frame Vs From Vp or Vice Versa

12.3.5. Carbonate: Vs From Vp and Vice Versa

12.4. Velocity/Elastic Moduli Prediction (Model)

12.4.1. Kuster-Toksoz Effective Medium

12.4.2. Wu's Self-Consistent Model

12.4.3. Differential Effective Medium Model

12.5. Fluid Substitution Modeling

12.5.1. General Gassmann's Substitution

12.5.2. Shale-Sand Mixture Model (Xu-White)

References

Chapter Appendix A: Elastic Properties of Rock Minerals

References

Chapter Appendix B: Elastic/Physical Properties of Fluids

B.1. Water Properties

B.2. Oil Properties

B.3. Gas Properties

References

Further Reading

Chapter Appendix C: Conversion Table

Density

Pressure

Pressure Gradient/Density

Other Common Conversion

Index

Back Cover

The users who browse this book also browse


No browse record.