Synthesis of Inorganic Nanomaterials :Advances and Key Technologies ( Micro and Nano Technologies )

Publication subTitle :Advances and Key Technologies

Publication series :Micro and Nano Technologies

Author: Bhagyaraj   Sneha Mohan;Oluwafemi   Oluwatobi Samuel;Kalarikkal   Nandakumar  

Publisher: Elsevier Science‎

Publication year: 2018

E-ISBN: 9780081019764

P-ISBN(Paperback): 9780081019757

Subject: TB383 Keywords special structure material

Keyword: 工程材料学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Synthesis of Inorganic Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area.

Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems.

  • Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods
  • Presents the latest advances in synthesis protocols
  • Includes the latest techniques used in the physical and chemical characterization of nanomaterials
  • Covers the characterization of all the important materials groups, such as carbon nanostructures, core-shell quantum dots, me

Chapter

1.2.2. Richard E. Smalley

1.3. Classification of Nanomaterials

1.3.1. Zero-Dimension Structures

1.3.2. One-Dimensional Structures

1.3.3. Two-Dimensional Structures

1.4. Synthesis of Nanostructures

1.5. Properties of Nanomaterials

1.5.1. Optical Properties

1.5.2. Magnetic Properties

1.5.3. Electronic Properties

1.5.4. Mechanical Properties

1.5.5. Catalytic Properties

1.5.6. Nonlinear Optical Properties

1.6. Characterization of Nanomaterials

1.6.1. Optical Characterizations

1.6.2. Morphological Characterizations

1.6.3. Electrical Characterizations

1.6.4. Magnetic Characterizations

1.6.5. Antibacterial Properties

1.6.6. In Vivo Characterizations

1.7. Application of Nanomaterials

1.8. The Future and Risks of Nanotechnology

1.9. Conclusions

References

Chapter 2: An Overview of Metal Oxide Nanostructures

2.1. Introduction

2.2. Top-Down Fabrication

2.3. Bottom-up Fabrication

2.3.1. Solution-Phase Fabrication

2.3.1.1. Sol-Gel Deposition

2.3.1.2. Electrochemical Deposition

2.3.1.3. Hydrothermal-Solvothermal Synthesis

2.3.1.4. Microemulsion

2.3.1.5. Coprecipitation

2.3.1.6. Microwave Synthesis

2.3.1.7. Sonochemical Method

2.3.2. Vapor-Phase Growth

2.3.2.1. Pulsed Laser Deposition

2.3.2.2. Sputtering

2.3.2.3. Chemical Vapor Deposition

2.3.3. Spray Pyrolysis

2.4. Reinforcement of Nanomaterials by Porous Supports: Stöber Method

2.5. General Applications of Metal Oxide Nanostructures

2.5.1. Photovoltaic Application

2.5.2. Lithium Ion Batteries

2.5.3. Catalysis

2.5.4. Gas Sensing

2.5.5. Biomedical Application

References

Chapter 3: Quantum Nanostructures (QDs): An Overview

3.1. Introduction

3.2. Classification of Nanostructures

3.3. What Are Quantum Dots?

3.4. Quantum Confined Electrons-The Excitons

3.5. Special Properties of Quantum Dots

3.5.1. Multiple Exciton Generation

3.5.2. Photoluminescence

3.5.3. Tunable Bandgap

3.6. Fabrication/Synthesis of Quantum Nanostructures

3.6.1. Top-Down Approaches

3.6.1.1. Ball Milling

3.6.1.2. Lithography

3.6.2. Bottom-Up Approaches

3.6.2.1. Physical Methods

Inert Gas Condensation

Physical Vapor Deposition

Epitaxy

Sputtering

Arc Discharge

Laser Ablation

Laser Pyrolysis

3.6.2.2. Chemical Methods

Chemical Vapor Deposition

Atomic Layer Deposition

Spray Pyrolysis

Colloidal Synthesis

Sol-Gel Method

Sonochemical Synthesis

Microwave Assisted Synthesis

Lab-on-Chip

3.7. Synthesis of MPA Capped CdTe QDs

3.8. Characterizations

3.8.1. XRD Analysis

3.8.2. Optical Absorbance

3.8.3. Photoluminescence Spectra

3.9. Applications

3.9.1. Quantum Dot Display

3.9.2. Biological Imaging

3.9.3. Quantum Dot Solar Cells

3.9.3.1. Quantum Dot Schottky Solar Cells

3.9.3.2. Quantum Dot Heterojunction Solar Cells

3.9.3.3. Quantum Dot Sensitized Solar Cells

References

Chapter 4: Heterostructured Nanomaterials: Latest Trends in Formation of Inorganic Heterostructures

4.1. Introduction

4.1.1. Core-Shell Heterostructures

4.1.2. Shell-Core-Shell Heterostructures

4.1.3. Janus Heterostructures

4.1.4. Matrix-Dispersed Heterostructures

4.2. Latest Trends in Synthesis of Heterostructures

4.2.1. Synthesis of Thin Film-Based Heterostructures

4.2.2. Synthesis of 1D Inorganic Heterostructures

4.2.3. Synthesis of 2D Inorganic Heterostructures

4.2.3.1. Heterostructures by Mechanical Exfoliation and Stacking

4.2.3.2. Direct Synthesis of 2D Heterostructures

4.2.3.3. Seed-Mediated Growth Strategy

4.2.3.4. Step-by-Step Deposition Strategy

4.2.3.5. Microwave Synthesis Strategy

4.2.3.6. Spray Pyrolysis Strategy

4.2.3.7. Sonochemical Strategy

4.2.3.8. Two-Step Thermolysis Strategy

4.2.3.9. Sol-Gel Method

4.2.4. Synthesis of 3D Inorganic Heterostructures

4.3. Different Types of Heterostructures

4.4. Concluding Remarks

Acknowledgments

References

Chapter 5: Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites

5.1. Introduction

5.2. Synthesis of Nanoparticles

5.2.1. Coprecipitation

5.2.2. Hydrothermal Technique

5.2.3. Inert Gas Condensation

5.2.4. Sputtering

5.2.5. Microemulsion

5.2.6. Microwave Assisted

5.2.7. Laser Ablation

5.2.8. Sol-Gel

5.2.9. Ultrasound

5.2.10. Spark Discharge

5.2.11. Template Synthesis

5.2.12. Biological Synthesis

5.3. Synthesis of Nanocomposites

5.3.1. Nanocomposites

5.3.2. Metal Nanocomposites

5.3.2.1. Spray Pyrolysis

5.3.2.2. Infiltration

5.3.2.3. Rapid Solidification

5.3.2.4. High-Energy Ball Milling

5.3.2.5. Chemical Vapor Deposition

5.3.2.6. Physical Vapor Deposition

5.3.2.7. Colloidal Method

5.3.3. Ceramic Nanocomposites

5.3.3.1. Powder Process

5.3.3.2. Polymer Precursor and Sol-Gel

5.3.4. Polymer Nanocomposites

5.3.4.1. Melt Blending

5.3.4.2. Solution Mixing

5.3.4.3. In Situ Intercalative Polymerization

5.3.4.4. In Situ Formation and Sol-Gel

5.4. Conclusion

References

Further Reading

Chapter 6: Synthesis of Nanocomposites

6.1. Introduction

6.2. Synthesis of Polymer Nanocomposites

6.2.1. Major Routes of Polymer Nanocomposite Syntheses

6.2.1.1. Solution Blending

6.2.1.2. Melt Processing

6.2.1.3. In Situ Polymerization

6.2.2. Other Common Methods

6.2.3. Synthesis of Biopolymer Nanocomposites

6.3. Synthesis of Ceramic Nanocomposites

6.3.1. Mechanochemical Synthesis

6.3.1.1. Ball Milling

Construction and Working

6.3.2. Vapor Phase Reaction Technique

6.3.3. High-Temperature Synthesis

6.3.3.1. Combustion Synthesis

Solid State Combustion

Self-Propagating High-Temperature Synthesis (SHS)

6.3.4. Solution Techniques

6.3.4.1. Sol-Gel

6.3.4.2. Coprecipitation

6.3.4.3. Spray Decomposition

6.3.4.4. Solution Combustion

6.4. Synthesis of Metal Matrix Nanocomposites

6.4.1. Liquid-Phase Processes

6.4.2. Solid-Phase Processes

6.4.3. Two-Phase Processes

6.4.4. Deposition Techniques

6.4.5. In Situ Processes

References

Chapter 7: Green Synthesis of Nanomaterials

7.1. Introduction

7.1.1. Approaches for Synthesis

7.2. Why Green Synthesis?

7.3. Synthesis of Nanoparticles

7.3.1. Microbes

7.3.2. Algae

7.3.3. Fungi

7.3.4. Plants

7.3.5. Synthesis of Nanoparticles-Mechanism

7.3.6. Factors Affecting Synthesis

7.3.7. Characterization of Nanoparticles

7.3.8. Applications of Nanoparticles

7.4. Conclusion

References

Further Reading

Chapter 8: Synthesis Strategies of Single-Phase and Composite Multiferroic Nanostructures

8.1. Introduction

8.2. Multiferroics and Their Classification

8.2.1. Single-Phase Multiferroics

8.2.2. Composite Multiferroics

8.3. Synthesis Methods of Single-Phase and Composite Multiferroics

8.3.1. Molten Salt Method

8.3.2. Solid-State Reaction Method

8.3.3. Sol-Gel Method

8.3.4. Hydrothermal/Solvothermal Method

8.3.5. Sonochemical Method

8.3.6. Solution Combustion Method

8.4. Multiferroic Thin Films and Fabrication Methods

8.4.1. Pulsed Laser Deposition (PLD)

8.4.2. Sputtering

8.4.3. Molecular Beam Epitaxy (MBE)

8.4.4. Spin Coating

8.5. Polymer-Based Multiferroics

8.6. Conclusion

References

Further Reading

Chapter 9: Silicon Carbide Nanomaterials

9.1. Introduction

9.2. Synthesis of SiC Nanomaterials

9.2.1. 0D SiC Nanomaterials

9.2.1.1. Solid Nanoparticles

9.2.1.2. Hollow Nanoparticles

9.2.1.3. Core-Shell Nanoparticles

9.2.2. 1D SiC Nanomaterials

9.2.2.1. Nanowires

Synthesis of SiC Nanowires by Gas-Phase-Based Process

Synthesis of SiC Nanowires by Solution-Based Process

9.2.2.2. Nanotubes

9.2.2.3. Nanocables

9.2.3. 2D SiC Nanomaterials

9.2.4. 3D SiC Nanomaterials

9.3. Properties of SiC Nanomaterials

9.3.1. Mechanical Properties of SiC Nanomaterials

9.3.2. Electrical Properties of SiC Nanomaterials

9.3.3. Thermal Properties of SiC Nanomaterials

9.3.4. Optical Properties of SiC Nanomaterials

9.4. Application and Potentials of SiC Nanomaterials

9.4.1. Composites

9.4.2. Sensors

9.4.3. Nanoelectromechanical Systems

9.4.4. Catalyst

9.4.5. Field Effect Transistor

9.4.6. Hydrogen Storage

9.5. Concluding Remarks

References

Chapter 10: Recent Advances in the Synthesis of Metal Oxide (MO) Nanostructures

10.1. Introduction

10.2. Synthetic Routes of Metal Oxide Nanostructures

10.2.1. Precipitation Method

10.2.2. Sol-Gel Technique

10.2.3. Nonaqueous Sol-Gel Routes

10.2.4. Hydrothermal Technique

10.2.4.1. Surfactant Assisted Hydrothermal Approach

10.2.4.2. Surfactant-Free Hydrothermal Approach

10.2.5. Microwave-Assisted Synthesis

10.2.6. Chemical Vapor Deposition

10.2.7. Thermal Oxidation

10.2.8. Electrospinning

10.2.9. Solid-State Reactions

10.3. Conclusion and Future Prospective

Acknowledgments

References

Further Reading

Chapter 11: Hydrogels: Smart Nanomaterials for Biomedical Applications

11.1. Introduction

11.2. Historical Perspective of Hydrogels

11.3. Hydrogels as Tunable or Stimuli-Responsive Nanomaterials

11.4. Biosensing

11.5. Bone and Knee Replacements

11.6. Future Prospectives

Acknowledgments

Conflict Of Interest

References

Index

Back Cover

The users who browse this book also browse


No browse record.