Nanobiosensors for Biomolecular Targeting ( Micro and Nano Technologies )

Publication series :Micro and Nano Technologies

Author: Gopinath   Subash C. B.;Lakshmipriya   Thangavel  

Publisher: Elsevier Science‎

Publication year: 2018

E-ISBN: 9780128139011

P-ISBN(Paperback): 9780128139004

Subject: TB3 Engineering Materials

Keyword: 工程材料学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Nanobiosensors for Bio-molecular Targeting presents the latest analytical methods for the detection of different substances in the range of small molecules to whole cells, exploring the advantages and disadvantages of each method. Biosensors combine the component of biological origin and physicochemical detector to show the presence of analytes in a given sample. The use of bionanotechnology has led to a significant advancement in the progression of nanobiosensors and has been effectively used for biomedical diagnosis.

  • Explains the detection techniques used by nanosensors, exploring the strengths and weaknesses of each for the detection of disease
  • Shows how biosensors are used to detect various types of biomolecules
  • Demonstrates how the use of nanomaterials makes biosensors both cheaper and more efficient

Chapter

1.2.1. Electrochemical Sensor

1.2.2. Amperometric Sensor

1.2.3. Potentiometric Sensor

1.2.4. Conductometric Sensor

1.2.5. Optical Sensor

1.2.6. Thermal Sensor

1.2.7. Piezoelectric Sensor

1.3. Detection of Biological Molecules

1.3.1. Detection of Glucose

1.3.2. Pathogenic Detection by Biosensor

1.3.2.1. Viral Detections

1.3.2.1.1. Biomarkers for Human Papillomavirus

1.3.2.1.2. Biomarkers for Influenza Virus

1.3.2.1.3. Biomarkers for the Dengue Virus

1.3.2.2. Bacteria Detection

1.3.2.3. Cancer Detection

1.4. High-Performance Sensing

1.4.1. Biofouling

1.5. Validation of Biosensors by Enzyme-Linked Immunosorbent Assay

1.5.1. Monolex ELISA

1.5.2. Multiplex ELISA

1.6. Conclusions

References

Further Reading

Chapter 2: Physical Surface Modification on the Biosensing Surface

2.1. Biosensors

2.2. Biomolecule Recognition Elements

2.3. Transducer

2.4. Requirements of Biosensors

2.5. Surface Modification

2.5.1. Metal Nanostructures

2.5.2. Silicon

2.5.3. Carbon Nanostructures

2.5.3.1. Graphene

2.5.3.2. Carbon Nanotubes

2.5.3.3. Fullerene

2.5.4. Metal Oxides

2.5.4.1. Zinc Oxide

2.5.4.2. Copper Oxide

2.5.4.3. Titanium Oxide

2.5.4.4. Cerium Oxide

2.5.4.5. Other Metal Oxides

2.5.5. Polymers

2.5.5.1. Polyaniline

2.5.5.2. Polypyrrole

2.6. Concluding Remarks

Acknowledgments

References

Chapter 3: Functionalization on Sensing Surfaces for Efficient Biomolecular Capturing

3.1. Introduction

3.2. Nanotechnology in Functionalization

3.2.1. Nanomaterials

3.2.2. Nanomaterials for Functionalization

3.3. Polymers in Functionalization

3.3.1. Conducting Polymers

3.3.2. Binding Polymers

3.3.3. Silicon Polymers

3.3.4. Polymethacrylate Materials

3.4. Aptamers in Functionalization

3.4.1. Aptamers

3.4.2. Liposomal Aptamers Versus Biotin

3.4.3. Aptamers in DNA Detection

3.5. Functionalization in Optical Sensing

3.5.1. Surface Plasmon Resonance (SPR)

3.5.2. Fiber Optics

3.5.3. Fluorescence

3.5.4. Surface-Enhanced Raman Spectroscopy (SERS)

3.5.5. Quantum Dots

3.6. Functionalization in Electrochemical Sensing

3.7. Functionalization in Physical Sensing

3.7.1. Micromechanical Oscillators

3.7.2. Microcantilevers

3.7.3. Quartz Crystal Microbalance

3.7.4. Piezoelectric Resonators

3.8. Carbon Materials in Functionalization

3.8.1. Diamond in Functionalization

3.8.2. Graphene in Functionalization

3.9. Functionalization of Silicon (Si) Surface

3.10. Trend and Future Scope of Functionalization

3.11. Conclusion

Acknowledgments

References

Chapter 4: Nucleic Acid Complementation Analysis on Biosensors

4.1. Introduction

4.2. Types of Biosensors

4.3. Applications of Biosensors

4.3.1. Food Processing, Monitoring, and Authenticity

4.3.2. Fermentation Processes

4.3.3. Technology for Sustainable Food Safety

4.3.4. Medical Field

4.3.5. Fluorescent Biosensors

4.3.6. Biodefense Biosensing Applications

4.3.7. Metabolic Engineering

4.3.8. Plant Biology

4.4. Experimental Procedure

4.4.1. Preparation of SiO2

4.4.2. Fabrication and Characteristics

4.4.3. DNA Immobilization

4.5. Results and Discussion

4.6. Conclusions

References

Chapter 5: Recognition of Bacterial DNA on SAW-Based Biosensors

5.1. Introduction

5.2. Acoustic-Based Sensors

5.2.1. Bulk Acoustic Wave

5.2.2. Surface Acoustic Wave-Based Devices

5.2.3. Plate Wave

5.2.4. Comparison of Acoustic-Based Sensors' Sensitivity

5.3. Methodology of Producing Nano Structure Waveguide SHSAW (Love Wave) Biosensor

5.4. Functionalization SiO2 Nanoparticles Thin Layer Waveguide Surface for DNA Detection

5.5. Analytical Performance of SiO2 Nanoparticles Waveguide Biosensor

5.6. Conclusion

Acknowledgments

References

Chapter 6: A Disposable Biosensor Based on Antibody-Antigen Interaction for Tungro Disease Detection

6.1. Introduction

6.2. Methodology

6.2.1. Screen-Printed Carbon Electrode Fabrication

6.3. Development of Electrochemical System

6.4. Immobilization of Antibodies in Polypyrrole

6.4.1. Preparation of Conjugated Gold Nano Particles With Antibodies

6.4.2. Immobilization of Antibody Colloid Gold Conjugate in Polypyrrole (PPy)

6.5. Electrochemical Characterization of Screen Printed Carbon Electrode (SPCE)

6.5.1. General Procedure for Electrochemical Analysis of Immunosensors for the Tungro Disease Approach

6.5.2. Chronoamperometry Analysis of TMB/H2O2/IgG-HRP on Bare SPCE for Potential Selection

6.6. Calibration Curve of Tungro Disease Immunosensor

6.7. Cross-Reactivity Study Using Different Antigen Parameters

6.7.1. Surface Analysis of Morphology Structure for the Immobilization Process onto SPCE

6.8. Result and Discussion

6.8.1. Rabbit Polyclonal Antibodies Labeling With Peroxidase

6.8.2. Characterizations Study Using Chronoamperometry

6.8.2.1. Chronoamperometry Analysis of TMB/H2O2/IgG-HRP on Bare SPCE for Potential Selection

6.9. Cross-Reactivity Studies

6.9.1. Scanning Electron Microscope Analysis of the Working Electrode Surface of SPCE

6.10. Conclusion

Acknowledgments

References

Chapter 7: Antibody-Mediated Diagnosis of Biomolecules

7.1. Introduction

7.2. Antibody

7.2.1. Interaction Between Biomolecules and Antibodies

7.3. Material Substrate Use in Biosensing Applications

7.4. Metal Substrates for Biosensing

7.5. Polymeric Substrate for Biosensing

7.5.1. Conducting Polymers

7.5.2. Electroluminescence

7.5.3. Optical Fiber

7.5.4. Polymeric Hydrogels

7.5.5. Polymers in Optical Biosensing

7.6. Hybrid Substrate for Biosensing

7.7. Miscellaneous Substrate for Biosensing

7.8. Conclusion

Acknowledgements

References

Chapter 8: Biosensor Recognizes the Receptor Molecules

8.1. Introduction

8.2. Why Use Nanotechnology?

8.3. Why Use Biosensors?

8.4. Bioreceptor Molecules

8.4.1. Enzyme-Based Recognition

8.4.2. Antibody-Based Recognition

8.4.3. Receptor Protein

8.4.4. Nucleic Acid-Based Recognition

8.5. Nucleic Acid Biosensor-Based

8.6. Biosensor Development Considerations

8.7. Type of Transducers

8.7.1. Conventional Transducers

8.7.2. Optical Transducers

8.7.3. Piezoelectric Transducer

8.7.4. Conductimetry Transducers

8.8. Future Prospects of Biosensors

8.9. Conclusion

References

Chapter 9: Nanoelectronics in Biosensing Applications

9.1. Introduction

9.2. Neutralizer Displacement and Micro-Nuclear Magnetic Resonance

9.3. BioDVD Platform

9.4. Smartphone

9.5. Interdigitated Electrode (IDE) Sensor

9.6. Field Effect Transistor-Based Biosensor

9.7. Microfluidic-Delivery on Electronic Sensors

9.8. Enhancing the Performance of Nanoelectronic Sensors

9.9. Conclusions

References

Chapter 10: Microtechnology and Nanotechnology Advancements Toward Bio-Molecular Targeting

10.1. Zinc Oxides’ Thin Film Deposition and Growth Techniques

10.1.1. Sol-Gel Method

10.1.2. Hydrothermal Method

10.2. Gold Nanoparticles’ Properties and Application

10.3. Interdigitated Electrodes

10.4. Zinc Oxides for Nanobiosensors

10.4.1. Electrochemical Impedance Spectroscopy

10.4.1.1. Randles Equivalent Circuits and Nyquist and Bode Plots

10.5. DNA/Nucleic Acid Biosensor

10.6. Chapter Summary

References

Further Reading

Chapter 11: Electrospun Nanofibers for Biosensing Applications

11.1. Introduction

11.2. Electrospinning Mechanism

11.3. Electrospinning Parameters

11.3.1. Effect of Applied Voltage

11.3.2. Effect of Solution Flow Rate

11.3.3. Effect of Solution Concentration and Solution Viscosity

11.3.4. Effect of Solution Conductivity

11.3.5. Effect of Solvent Volatility

11.3.6. Effect of Ambient Parameters

11.3.7. Effect of Needle to Collector Distance

11.4. Rationale of Using Nanofibers for Biosensing Applications

11.4.1. Selective and Sensitive Nanofibrous Biosensors

11.4.2. Conductive Nanofibrous Biosensors

11.4.3. Nanofibrous Biosensor Electrodes

11.4.4. Nanofibrous Membranes for Biosensors

11.5. Conclusion

Acknowledgments

References

Chapter 12: Carbon Dots as Optical Nanoprobes for Biosensors

12.1. Introduction

12.2. CDs as Biosensor Receptors

12.2.1. Fluorescence Properties and Characteristics

12.2.2. Preparation of CDs

12.2.3. Isolation and Fragmentation

12.2.4. Physiochemical Properties and Their Effect Within the Environment

12.2.5. Biocompatibility and Toxicology

12.3. Design and Modification of CDs for Biosensors

12.3.1. Simple Passivation (Thermal/Acid)

12.3.2. Specific Surface Modification (Molecules/Biomolecule)

12.3.3. Doping of Heteroatoms

12.3.4. Optical Tuning During Synthesis

12.3.5. Matrix Blended (Immobilization/MIPs)

12.4. Typical Optical Sensing Mechanism

12.4.1. ``Turn-Off´´ Strategy

12.4.2. ``Turn-Off-On´´ Strategy

12.5. Practical Utilization of CDs in Biosensors

12.6. Summary and Outlook

References

Further Reading

Chapter 13: Formaldehyde Biosensors in Foodstuffs Applying Nano Gold Entrapped in p-HEMA Deposited on Screen-Printed Carbo ...

13.1. Formaldehyde Biosensor

13.1.1. General Insight

13.1.2. Formaldehyde Biosensors

13.1.2.1. Formaldehyde Biosensors in Water

13.1.2.2. Formaldehyde Sensor in Air/Gas

13.1.2.3. Formaldehyde Biosensors in Foodstuffs

13.1.3. Summary

13.2. Nano Gold Particles in Biosensor

13.2.1. Nano Particle Entrapment

13.2.2. Nano Gold Entrapment

13.2.3. Summary

13.3. Screen-Printed Carbon Electrodes in Biosensor

13.3.1. Immobilization Media

13.3.2. Screen Printed Carbon Electrodes

13.3.3. Summary

13.4. Transducer Systems

13.5. Future Perspectives

References

Index

Back Cover

The users who browse this book also browse


No browse record.