Chapter
0.2. A crash course on hod mice
0.3. The mouse set conjecture
0.5. The comparison theory of hod mice
0.6. Hod is a hod premouse
1.1. Hybrid \J-structures
1.3. Iteration trees and iteration strategies
1.4. Layered strategy premice
1.5. Iterations of Σ-mice
Chapter 2. Comparison theory of hod mice
2.1. Hod pair constructions
2.2. Iterability of hod pair constructions
2.3. Universality of the fully backgrounded constructions
2.4. Coarse Γ-Woodin mice
2.5. Comparison under 𝐴𝐷⁺
2.6. Positional and commuting iteration strategies
2.7. The diamond comparison argument
Chapter 3. Hod mice revisited
3.1. The internal theory of hod premice
3.2. OD-full pointclasses
3.3. The derived models of hod mice
3.5. Getting branch condensation
3.7. Reorganizing hod mice
Chapter 4. Analysis of HOD
4.3. The direct limit of iterates of hod mice
4.4. The computation of Hod
Chapter 5. Hod pair constructions
5.3. Fullness preservation
5.4. The comparison argument revisited
5.6. Γ(\P,Σ) when ł^{\P} is successor
5.8. Strongly ⃗𝐵-guided strategies
Chapter 6. A proof of the mouse set conjecture
6.1. The generation of the mouse full pointclasses
6.2. An analysis of stacks
6.3. Capturing of hod pairs
6.4. The mouse set conjecture
Appendix A. Descriptive set theory primer
A.4. The derived model theorem