Chapter
2.2.4. Anharmonic Vibrational Properties
2.3. Probing the Vibrational Modes with IR Light
2.3.1. Drude-Lorentz Model Applied to IR Spectroscopy
2.3.2. Low-Frequency Dielectric Permittivity Tensor of a Crystal and Born Effective Charge Tensors
2.3.3. IR Spectroscopy of Powder Materials
2.3.3.1. Light Reflection and Transmission by an Isotropic Dielectric Slab
2.3.3.1.1. IR Absorption by Isolated Small Particles in a Nonabsorbing Matrix
2.3.3.1.2. Effective Dielectric Functions of Composite Samples
2.3.3.2. Infrared Emission Spectroscopy (IES)
2.5. Modeling of Vibrational Spectra from First Principles
Chapter 3: Modern Infrared and Raman Instrumentation and Sampling Methods
3.2.2. Raman Spectroscopy
3.2.3. IR and Raman Microscopies
3.2.4. Portable and Miniature Instruments
3.3. IR Sampling Techniques
3.3.1. Transmission Through Dispersions in Transparent Media
3.3.2. Transmission Through Thin Films
3.3.3. External Specular Reflection
3.3.4. Reflection-Absorption of Thin Films on Mirror Substrates
3.3.5. Diffuse Reflectance MIR and NIR Spectroscopies
3.3.7. Photoacoustic Spectroscopy
3.3.8. Internal Reflection IR and Attenuated Total Reflectance (ATR) Spectroscopy
3.3.9. Combined Acquisition in the MIR and NIR
3.4. Raman Sampling Techniques
Chapter 4: Spectral Manipulation and Introduction to Multivariate Analysis
4.2. Overview of Postcollection Spectral Processing
4.2.2. Baseline Corrections
4.2.3. Atmospheric Compensation
4.3. Identification and Separation of Overlapping Vibrational Transitions
4.3.1. Decomposition of Overlapping Bands
4.3.2. Derivative Analysis
4.4. Multivariate Analysis and Chemometric Quantification
4.4.1. Introduction to PCA and PLS
4.4.2. Training (Calibration) and Property datasets
4.4.3. Validation and Optimum Dimensionality
4.4.4. PCA and PCR Chemometrics in the Study of Clay Minerals
4.4.5. PLS Chemometrics for Clay Mineral Processing Applications
Chapter 5: IR Spectra of Clay Minerals
5.3. Characteristic Vibrations of Clay Minerals
5.4. The 1:1 Clay Minerals
5.4.1. Dioctahedral 1:1 Clay Minerals: The Kaolin Group
5.4.2. Trioctahedral 1:1 Clay Minerals: The Serpentine Group
5.5. The 2:1 Clay Minerals
5.5.1. Pyrophyllite, Talc
5.5.2.1. Dioctahedral Smectites
5.5.2.2. Trioctahedral Smectites
5.5.3. Vermiculite, Illite and Micas
5.6. Palygorskite, Sepiolite
Chapter 6: Raman Spectroscopy of Clay Minerals
6.2. Hydroxyl Stretching Region
6.2.1. The 1:1 Clay Minerals
6.2.1.1. The Kaolin Group Minerals
6.2.1.2. The Serpentine Group Minerals
6.2.2. The 2:1 Clay Minerals
6.2.2.1. Pyrophyllite and Talc
6.3. Theory of the Low Wavenumber Vibrational Modes
6.3.1. The 1:1 Clay Minerals
6.3.2. The 2:1 Clay Minerals
6.4. The Vibrational Modes of the Tetrahedral and Octahedral Sheets in the Low-Wavenumber Region
6.4.1. The 1:1 Clay Minerals
6.4.1.1. The Kaolin Group Minerals
6.4.1.2. The Serpentine Group Minerals
6.4.2. The 2:1 Clay Minerals
6.4.2.1. Talc and Pyrophyllite
6.4.3. Palygorskite and Sepiolite
Chapter 7: Applications of NIR/MIR to Determine Site Occupancy in Smectites
7.2. Octahedral Structures of Smectites
7.2.1. Di- and Tri-octahedral Structures of Smectites
7.2.2. Site Occupancy within a Ternary Fe-Al-Mg Field
7.3. Effect of Chemistry on the Presence and Position of Bands
7.3.2. Bond Strength (Valence)
7.3.3. Reduced Mass-Valence Sum
7.3.4. Effects of Next Nearest Neighbour Isomorphic Substitution
7.3.5. Ionic Radii Effects-A Generalised Approach
7.4. Methods to Quantify Octahedral Occupancy from IR Spectra
7.4.1. Band Decomposition
7.4.2. Spectral (Second) Derivative
7.4.3. Assigning Occupancies
7.4.4. Comparison to Random Distributions
7.5. Conclusions and Future Directions
Chapter 8: Application of Vibrational Spectroscopy in Clay Minerals Synthesis
8.2. Imogolite and Allophane
8.3.2. The Serpentine Minerals
8.4.1. Trioctahedral Minerals
8.4.2. Dioctahedral Minerals
8.4.2.3. Nontronite and Ferrian-smectite
Chapter 9: Infrared Studies of Clay Mineral-Water Interactions
9.2. Molecular Probes and Reporter Groups
9.3. Water Confined in Clay Mineral Interlayer Spaces
9.3.1. Smectites and Vermiculites (Ion Dipole)
9.3.1.1. Studies of Smectites and Vermiculites in the H2O Bending Region
9.3.1.2. Studies of H2O in the H2O Stretching Region for Smectites and Vermiculites
9.3.1.3. Vibrational Bands of the Clay Mineral that are Influenced by H2O
9.3.2. Nanoconfined H2O: Sepiolite and Palygorskite
9.3.3. Nanoconfined H2O: Halloysite and Imogolite
9.4. Clay Mineral-Water Interactions as Directors of Clay Mineral-Organic Adsorption Processes
Chapter 10: Analysis of Organoclays and Organic Adsorption by Clay Minerals
10.2. Basal Spacing of Organoclay
10.3. FTIR of Organoclay Intercalates
10.3.1. FTIR Spectrum of Surfactant in Organoclay
10.3.2. FTIR of Clay Mineral in Organoclay
10.4. In Situ XRD and FTIR of Organoclay
10.5. FTIR of Organoclay With Adsorbed Organic Contaminants
10.6. Concluding Comments and a Future Outlook
Chapter 11: Raman and Infrared Spectroscopies of Intercalated Kaolinite Groups Minerals
11.2.1.1. Intercalation of Hydrazine in Kaol
11.2.1.2. Deintercalation of Hydrazine from Kaol
11.2.2.1. Intercalation of Urea in Kaolinite
11.2.2.2. Intercalation of Urea in Halloysite
11.2.2.3. Deintercalation of Urea from Halloysite and from Kaol
11.2.3.1. Raman Non-coincidence
11.2.3.2. Intercalation of Formamide in Kaol
11.2.3.3. Deintercalation of Formamide from Kaol
11.2.4.1. Intercalation of Acetamide in Kaol
11.3.1. Dimethylsulphoxide, (CH3)2SO (DMSO) and Dimethylselenoxide, (CH3)2SeO (DMSeO)
11.3.1.1. Intercalation of DMSO and DMSeO in Kaol
11.3.1.2. Deintercalation of DMSO from Kaol
11.4.1. Potassium Acetate
11.4.1.1. Intercalation of KAc in Kaol
11.4.1.2. Deintercalation of KAc from Kaol
Chapter 12: Infrared and Raman Spectroscopies of Pillared Clays
12.2.1. Al13-Sulfate and Al13 Nitrate
12.2.2. Ga13-Sulfate and Fe13-Sulfate
12.2.3. Mixed (Al-Fe)13-Sulfate, (Al-Cr)13-Sulfate and (Al-Mn)13 Sulfate
12.3.1. Al13 Pillared Smectites with Tetrahedral Substitutions
12.3.1.1. Al13-Pillared Beidellite
12.3.1.2. Al13-Pillared Sap
12.3.2. Al13 Pillared Smectites with Octahedral Substitutions
12.3.2.1. Al13-Pillared Ht
12.3.2.2. Al13-Pillared Mt and Al13-Pillared Acid Activated Mt
12.4. Mixed (Al-Metal)13 PILC
12.5. Ti PILC and Mixed (Ti-Metal) PILC
12.5.2. Mixed (Ti-Metal) PILC
12.5.3. Impregnated Ti-Metal-PILC
12.5.3.1. Palladium (Pd)- and Chromium (Cr)-Impregnated Ti-Zr PILC
12.5.3.2. Vanadium-Impregnated Ti PILC
12.6. Fe-PILC and Mixed (Fe-Metal) PILC
12.6.2. Mixed (Fe-Metal) PILC and Modified Fe-PILC
12.7. Si-PILC and Derived Materials
12.7.1. Hybrid Mesostructured Si-PILC
12.7.2. Phospho-Tungstate Functionalized Si-PILC
12.7.3. Titanium Functionalized Si PILC
12.7.4. Iron Functionalized Si PILC
12.7.5. Nickel and Cobalt Doped Si PILC
12.7.6. Si-Zr-Porous Clay Heterostructures
12.7.7. Tungsten Impregnated Mixed Si-Zr-PILC
12.8.1. Humic Acid Impregnated Zr PILC
12.8.2. Organo-Sulfonated Zr-PILC
12.9.1. Macrocyclic Transition Metals
12.9.2. PVMO-Bentonite Heterogeneous Catalysts
12.10. Concluding Remarks
Chapter 13: NIR Contribution to The Study of Modified Clay Minerals
13.2. Mechano-Chemical Treatment
13.3. Layer Charge Reduction
13.5. Organo-Modified Clay Minerals
13.5.1. NIR Spectra of Organoclays
13.5.2. Interaction of Organoclays With Water and Other Organic Species
13.5.3. Acid Treatment of Organoclays
13.5.4. Adsorption of Pyridine on Acid-Treated Samples
13.6. Clay-Based Heterostructures
Chapter 14: Remote Detection of Clay Minerals
14.1. Presence of Clay Minerals in Our Solar System
14.2. Remote Detection of Clay Minerals
14.2.1. VNIR Bands Used for Detection of Clay Minerals
14.2.1.1. VNIR Characterisation of Smectites
14.2.1.2. VNIR Characterisation of Kaolinites-Serpentines
14.2.1.3. VNIR Characterisation of Chlorites
14.2.1.4. VNIR Characterisation of Micas, Illites and Other Clay Minerals
14.2.1.5. VNIR Characterisation of Poorly Crystalline Clay Minerals
14.2.2. MIR Bands Used for Detection of Clay Minerals in TIR Spectra
14.2.2.1. Si-O Stretching Vibrations
14.2.2.2. Si-O Bending Vibrations
14.3. Characterisation of Clay Minerals on Earth
14.3.1. Challenges of Remote Detection of Clay Minerals on Earth
14.3.2. Instruments and Datasets Available for IR Remote Sensing of Clay Minerals on Earth
14.3.3. Remote Characterisation of Clay Minerals on Earth
14.3.3.1. Clays and Clay Minerals Detected in Hyaloclastites in Askja, Iceland
14.3.3.2. Clays and Clay Minerals Detected at Swansea, Arizona
14.3.3.3. Clays and Clay Minerals Detected at the Painted Desert, Arizona
14.4. Characterisation of Clays and Clay Minerals on Mars
14.4.1. Global Mapping of Clays and Clay Minerals and Aqueous Alteration on Mars
14.4.1.1. VNIR Observations of Clays and Clay Minerals and Aqueous Alteration on Mars
14.4.1.2. TIR Observations of Clays and Clay Minerals and Aqueous Alteration on Mars
14.4.2. Regional Mapping of Clays and Clay Minerals and Aqueous Alteration on Mars
14.4.2.1. The Clay-Laden Eastern Margin of Chryse Planitia
14.4.2.2. The Clay-Bearing Region West and South of Isidis Planitia
14.5. Characterisation of Clays in Meteorites
14.6. Characterisation of Clay Minerals at Asteroid 1-Ceres
14.7. Characterisation of Clay Minerals in Comets
14.8. Summary of Remote Observations of Planetary Clay Minerals