Infrared and Raman Spectroscopies of Clay Minerals ( Volume 8 )

Publication series :Volume 8

Author: Gates   Will;Kloprogge   J. Theo;Madejova   Jana  

Publisher: Elsevier Science‎

Publication year: 2017

E-ISBN: 9780081003596

P-ISBN(Paperback): 9780081003558

Subject: P Astronomy and Earth Sciences;P5 Geology;X Environmental Science, Safety Science

Keyword: 地质学,环境科学、安全科学,天文学、地球科学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Infrared and Raman Spectroscopies of Clay Minerals, Volume 8 in the Developments in Clay Science series, is an up-to-date overview of spectroscopic techniques used in the study of clay minerals. The methods include infrared spectroscopy, covering near-IR (NIR), mid-IR (MIR), far-IR (FIR) and IR emission spectroscopy (IES), as well as FT-Raman spectroscopy and Raman microscopy. This book complements the succinct introductions to these methods described in the original Handbook of Clay Science (Volumes 1, 1st Edition and 5B, 2nd Edition), offering greater depth and featuring the most important literature since the development and application of these techniques in clay science. No other book covers such a wide variety of vibrational spectroscopic techniques in a single volume for clay and soil scientists.

  • Includes a systematic review of spectroscopic methods
  • Covers the theory of infrared and Raman spectroscopies and instrumentation
  • Features a series of chapters each covering either a particular technique or application

Chapter

2.2.4. Anharmonic Vibrational Properties

2.3. Probing the Vibrational Modes with IR Light

2.3.1. Drude-Lorentz Model Applied to IR Spectroscopy

2.3.2. Low-Frequency Dielectric Permittivity Tensor of a Crystal and Born Effective Charge Tensors

2.3.3. IR Spectroscopy of Powder Materials

2.3.3.1. Light Reflection and Transmission by an Isotropic Dielectric Slab

2.3.3.1.1. IR Absorption by Isolated Small Particles in a Nonabsorbing Matrix

2.3.3.1.2. Effective Dielectric Functions of Composite Samples

2.3.3.2. Infrared Emission Spectroscopy (IES)

2.4. Raman Spectroscopy

2.5. Modeling of Vibrational Spectra from First Principles

Chapter 3: Modern Infrared and Raman Instrumentation and Sampling Methods

3.1. Introduction

3.2. Instrumentation

3.2.1. IR Spectroscopy

3.2.2. Raman Spectroscopy

3.2.3. IR and Raman Microscopies

3.2.4. Portable and Miniature Instruments

3.3. IR Sampling Techniques

3.3.1. Transmission Through Dispersions in Transparent Media

3.3.2. Transmission Through Thin Films

3.3.3. External Specular Reflection

3.3.4. Reflection-Absorption of Thin Films on Mirror Substrates

3.3.5. Diffuse Reflectance MIR and NIR Spectroscopies

3.3.6. IR Emission

3.3.7. Photoacoustic Spectroscopy

3.3.8. Internal Reflection IR and Attenuated Total Reflectance (ATR) Spectroscopy

3.3.9. Combined Acquisition in the MIR and NIR

3.4. Raman Sampling Techniques

3.5. Epilogue

Chapter 4: Spectral Manipulation and Introduction to Multivariate Analysis

4.1. Introduction

4.2. Overview of Postcollection Spectral Processing

4.2.1. Smoothing

4.2.2. Baseline Corrections

4.2.3. Atmospheric Compensation

4.2.4. Normalisation

4.3. Identification and Separation of Overlapping Vibrational Transitions

4.3.1. Decomposition of Overlapping Bands

4.3.2. Derivative Analysis

4.4. Multivariate Analysis and Chemometric Quantification

4.4.1. Introduction to PCA and PLS

4.4.2. Training (Calibration) and Property datasets

4.4.3. Validation and Optimum Dimensionality

4.4.4. PCA and PCR Chemometrics in the Study of Clay Minerals

4.4.5. PLS Chemometrics for Clay Mineral Processing Applications

4.5. Concluding Remarks

Chapter 5: IR Spectra of Clay Minerals

5.1. Introduction

5.2. Experimental

5.3. Characteristic Vibrations of Clay Minerals

5.4. The 1:1 Clay Minerals

5.4.1. Dioctahedral 1:1 Clay Minerals: The Kaolin Group

5.4.2. Trioctahedral 1:1 Clay Minerals: The Serpentine Group

5.5. The 2:1 Clay Minerals

5.5.1. Pyrophyllite, Talc

5.5.2. Smectites

5.5.2.1. Dioctahedral Smectites

5.5.2.2. Trioctahedral Smectites

5.5.3. Vermiculite, Illite and Micas

5.5.4. Chlorites

5.6. Palygorskite, Sepiolite

5.7. Conclusions

Chapter 6: Raman Spectroscopy of Clay Minerals

6.1. Introduction

6.2. Hydroxyl Stretching Region

6.2.1. The 1:1 Clay Minerals

6.2.1.1. The Kaolin Group Minerals

6.2.1.2. The Serpentine Group Minerals

6.2.2. The 2:1 Clay Minerals

6.2.2.1. Pyrophyllite and Talc

6.2.2.2. Smectites

6.2.2.3. Vermiculite

6.3. Theory of the Low Wavenumber Vibrational Modes

6.3.1. The 1:1 Clay Minerals

6.3.2. The 2:1 Clay Minerals

6.4. The Vibrational Modes of the Tetrahedral and Octahedral Sheets in the Low-Wavenumber Region

6.4.1. The 1:1 Clay Minerals

6.4.1.1. The Kaolin Group Minerals

6.4.1.2. The Serpentine Group Minerals

6.4.2. The 2:1 Clay Minerals

6.4.2.1. Talc and Pyrophyllite

6.4.2.2. Smectites

6.4.2.3. Vermiculites

6.4.3. Palygorskite and Sepiolite

6.5. Concluding Remarks

Chapter 7: Applications of NIR/MIR to Determine Site Occupancy in Smectites

7.1. Introduction

7.2. Octahedral Structures of Smectites

7.2.1. Di- and Tri-octahedral Structures of Smectites

7.2.2. Site Occupancy within a Ternary Fe-Al-Mg Field

7.3. Effect of Chemistry on the Presence and Position of Bands

7.3.1. Reduced Mass

7.3.2. Bond Strength (Valence)

7.3.3. Reduced Mass-Valence Sum

7.3.4. Effects of Next Nearest Neighbour Isomorphic Substitution

7.3.5. Ionic Radii Effects-A Generalised Approach

7.4. Methods to Quantify Octahedral Occupancy from IR Spectra

7.4.1. Band Decomposition

7.4.2. Spectral (Second) Derivative

7.4.3. Assigning Occupancies

7.4.4. Comparison to Random Distributions

7.5. Conclusions and Future Directions

Chapter 8: Application of Vibrational Spectroscopy in Clay Minerals Synthesis

8.1. Introduction

8.2. Imogolite and Allophane

8.3. 1:1 Clay Minerals

8.3.1. Kaolinite

8.3.2. The Serpentine Minerals

8.4. 2:1 Clay Minerals

8.4.1. Trioctahedral Minerals

8.4.1.1. Talc

8.4.1.2. Hectorite

8.4.1.3. Saponite

8.4.2. Dioctahedral Minerals

8.4.2.1. Pryophyllite

8.4.2.2. Beidellite

8.4.2.3. Nontronite and Ferrian-smectite

8.4.2.4. Montmorillonite

8.5. Vermiculite

8.6. Chlorite

8.7. Concluding Remarks

Chapter 9: Infrared Studies of Clay Mineral-Water Interactions

9.1. Introduction

9.2. Molecular Probes and Reporter Groups

9.3. Water Confined in Clay Mineral Interlayer Spaces

9.3.1. Smectites and Vermiculites (Ion Dipole)

9.3.1.1. Studies of Smectites and Vermiculites in the H2O Bending Region

9.3.1.2. Studies of H2O in the H2O Stretching Region for Smectites and Vermiculites

9.3.1.3. Vibrational Bands of the Clay Mineral that are Influenced by H2O

9.3.2. Nanoconfined H2O: Sepiolite and Palygorskite

9.3.3. Nanoconfined H2O: Halloysite and Imogolite

9.3.4. Physisorbed H2O

9.4. Clay Mineral-Water Interactions as Directors of Clay Mineral-Organic Adsorption Processes

9.5. Conclusions

Chapter 10: Analysis of Organoclays and Organic Adsorption by Clay Minerals

10.1. Organoclay

10.2. Basal Spacing of Organoclay

10.3. FTIR of Organoclay Intercalates

10.3.1. FTIR Spectrum of Surfactant in Organoclay

10.3.2. FTIR of Clay Mineral in Organoclay

10.4. In Situ XRD and FTIR of Organoclay

10.5. FTIR of Organoclay With Adsorbed Organic Contaminants

10.6. Concluding Comments and a Future Outlook

Chapter 11: Raman and Infrared Spectroscopies of Intercalated Kaolinite Groups Minerals

11.1. Introduction

11.2. Group A Molecules

11.2.1. Hydrazine

11.2.1.1. Intercalation of Hydrazine in Kaol

11.2.1.2. Deintercalation of Hydrazine from Kaol

11.2.2. Urea

11.2.2.1. Intercalation of Urea in Kaolinite

11.2.2.2. Intercalation of Urea in Halloysite

11.2.2.3. Deintercalation of Urea from Halloysite and from Kaol

11.2.3. Formamide

11.2.3.1. Raman Non-coincidence

11.2.3.2. Intercalation of Formamide in Kaol

11.2.3.3. Deintercalation of Formamide from Kaol

11.2.4. Acetamide

11.2.4.1. Intercalation of Acetamide in Kaol

11.3. Group B Molecules

11.3.1. Dimethylsulphoxide, (CH3)2SO (DMSO) and Dimethylselenoxide, (CH3)2SeO (DMSeO)

11.3.1.1. Intercalation of DMSO and DMSeO in Kaol

11.3.1.2. Deintercalation of DMSO from Kaol

11.4. Group C Molecules

11.4.1. Potassium Acetate

11.4.1.1. Intercalation of KAc in Kaol

11.4.1.2. Deintercalation of KAc from Kaol

11.4.2. Caesium Acetate

11.5. Concluding Remarks

Chapter 12: Infrared and Raman Spectroscopies of Pillared Clays

12.1. Introduction

12.2. Oligomers Salts

12.2.1. Al13-Sulfate and Al13 Nitrate

12.2.2. Ga13-Sulfate and Fe13-Sulfate

12.2.3. Mixed (Al-Fe)13-Sulfate, (Al-Cr)13-Sulfate and (Al-Mn)13 Sulfate

12.3. Al PILC

12.3.1. Al13 Pillared Smectites with Tetrahedral Substitutions

12.3.1.1. Al13-Pillared Beidellite

12.3.1.2. Al13-Pillared Sap

12.3.2. Al13 Pillared Smectites with Octahedral Substitutions

12.3.2.1. Al13-Pillared Ht

12.3.2.2. Al13-Pillared Mt and Al13-Pillared Acid Activated Mt

12.4. Mixed (Al-Metal)13 PILC

12.4.1. (Al-Fe)13-PILC

12.4.2. (Al-Cr)13-PILC

12.4.3. (Al-Zr)13-PILC

12.4.4. (Al-Co)-PILC

12.4.5. (Al-REE)-PILC

12.5. Ti PILC and Mixed (Ti-Metal) PILC

12.5.1. Ti-PMt

12.5.2. Mixed (Ti-Metal) PILC

12.5.3. Impregnated Ti-Metal-PILC

12.5.3.1. Palladium (Pd)- and Chromium (Cr)-Impregnated Ti-Zr PILC

12.5.3.2. Vanadium-Impregnated Ti PILC

12.6. Fe-PILC and Mixed (Fe-Metal) PILC

12.6.1. Fe-PILC

12.6.2. Mixed (Fe-Metal) PILC and Modified Fe-PILC

12.7. Si-PILC and Derived Materials

12.7.1. Hybrid Mesostructured Si-PILC

12.7.2. Phospho-Tungstate Functionalized Si-PILC

12.7.3. Titanium Functionalized Si PILC

12.7.4. Iron Functionalized Si PILC

12.7.5. Nickel and Cobalt Doped Si PILC

12.7.6. Si-Zr-Porous Clay Heterostructures

12.7.7. Tungsten Impregnated Mixed Si-Zr-PILC

12.8. Zr-PILC

12.8.1. Humic Acid Impregnated Zr PILC

12.8.2. Organo-Sulfonated Zr-PILC

12.9. Other-Metal PILC

12.9.1. Macrocyclic Transition Metals

12.9.2. PVMO-Bentonite Heterogeneous Catalysts

12.10. Concluding Remarks

Chapter 13: NIR Contribution to The Study of Modified Clay Minerals

13.1. Introduction

13.2. Mechano-Chemical Treatment

13.3. Layer Charge Reduction

13.4. Acid Treatment

13.5. Organo-Modified Clay Minerals

13.5.1. NIR Spectra of Organoclays

13.5.2. Interaction of Organoclays With Water and Other Organic Species

13.5.3. Acid Treatment of Organoclays

13.5.4. Adsorption of Pyridine on Acid-Treated Samples

13.6. Clay-Based Heterostructures

13.7. Concluding Remarks

Chapter 14: Remote Detection of Clay Minerals

14.1. Presence of Clay Minerals in Our Solar System

14.2. Remote Detection of Clay Minerals

14.2.1. VNIR Bands Used for Detection of Clay Minerals

14.2.1.1. VNIR Characterisation of Smectites

14.2.1.2. VNIR Characterisation of Kaolinites-Serpentines

14.2.1.3. VNIR Characterisation of Chlorites

14.2.1.4. VNIR Characterisation of Micas, Illites and Other Clay Minerals

14.2.1.5. VNIR Characterisation of Poorly Crystalline Clay Minerals

14.2.2. MIR Bands Used for Detection of Clay Minerals in TIR Spectra

14.2.2.1. Si-O Stretching Vibrations

14.2.2.2. Si-O Bending Vibrations

14.3. Characterisation of Clay Minerals on Earth

14.3.1. Challenges of Remote Detection of Clay Minerals on Earth

14.3.2. Instruments and Datasets Available for IR Remote Sensing of Clay Minerals on Earth

14.3.3. Remote Characterisation of Clay Minerals on Earth

14.3.3.1. Clays and Clay Minerals Detected in Hyaloclastites in Askja, Iceland

14.3.3.2. Clays and Clay Minerals Detected at Swansea, Arizona

14.3.3.3. Clays and Clay Minerals Detected at the Painted Desert, Arizona

14.4. Characterisation of Clays and Clay Minerals on Mars

14.4.1. Global Mapping of Clays and Clay Minerals and Aqueous Alteration on Mars

14.4.1.1. VNIR Observations of Clays and Clay Minerals and Aqueous Alteration on Mars

14.4.1.2. TIR Observations of Clays and Clay Minerals and Aqueous Alteration on Mars

14.4.2. Regional Mapping of Clays and Clay Minerals and Aqueous Alteration on Mars

14.4.2.1. The Clay-Laden Eastern Margin of Chryse Planitia

14.4.2.2. The Clay-Bearing Region West and South of Isidis Planitia

14.5. Characterisation of Clays in Meteorites

14.6. Characterisation of Clay Minerals at Asteroid 1-Ceres

14.7. Characterisation of Clay Minerals in Comets

14.8. Summary of Remote Observations of Planetary Clay Minerals

Bibliography

Index

Back Cover

The users who browse this book also browse