Hybrid Electric Vehicles :Principles and Applications with Practical Perspectives

Publication subTitle :Principles and Applications with Practical Perspectives

Author: Chris Mi   M. Abul Masrur  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9781118970539

P-ISBN(Paperback): 9781118970560

Subject: U469.72 electric automobile

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

Chapter 1 Introduction

1.1 Sustainable Transportation

1.1.1 Population, Energy, and Transportation

1.1.2 Environment

1.1.3 Economic Growth

1.1.4 New Fuel Economy Requirement

1.2 A Brief History of HEVs

1.3 Why EVs Emerged and Failed in the 1990s, and What We Can Learn

1.4 Architectures of HEVs

1.4.1 Series HEVs

1.4.2 Parallel HEVs

1.4.3 Series–Parallel HEVs

1.4.4 Complex HEVs

1.4.5 Diesel and other Hybrids

1.4.6 Other Approaches to Vehicle Hybridization

1.4.7 Hybridization Ratio

1.5 Interdisciplinary Nature of HEVs

1.6 State of the Art of HEVs

1.6.1 Toyota Prius

1.6.2 The Honda Civic

1.6.3 The Ford Escape

1.6.4 The Two-Mode Hybrid

1.7 Challenges and Key Technology of HEVs

1.8 The Invisible Hand–Government Support

1.9 Latest Development in EV and HEV, China’s Surge  in EV Sales

References

Chapter 2 Concept of Hybridization of the Automobile

2.1 Vehicle Basics

2.1.1 Constituents of a Conventional Vehicle

2.1.2 Vehicle and Propulsion Load

2.1.3 Drive Cycles and Drive Terrain

2.2 Basics of the EV

2.2.1 Why EV?

2.2.2 Constituents of an EV

2.2.3 Vehicle and Propulsion Loads

2.3 Basics of the HEV

2.3.1 Why HEV?

2.3.2 Constituents of an HEV

2.4 Basics of Plug-In Hybrid Electric Vehicle (PHEV)

2.4.1 Why PHEV?

2.4.2 Constituents of a PHEV

2.4.3 Comparison of HEV and PHEV

2.5 Basics of Fuel Cell Vehicles (FCVs)

2.5.1 Why FCV?

2.5.2 Constituents of a FCV

2.5.3 Some Issues Related to Fuel Cells

Reference

Chapter 3 HEV Fundamentals

3.1 Introduction

3.2 Vehicle Model

3.3 Vehicle Performance

3.4 EV Powertrain Component Sizing

3.5 Series Hybrid Vehicle

3.6 Parallel Hybrid Vehicle

3.6.1 Electrically Peaking Hybrid Concept

3.6.2 ICE Characteristics

3.6.3 Gradability Requirement

3.6.4 Selection of Gear Ratio from ICE to Wheel

3.7 Wheel Slip Dynamics

References

Chapter 4 Advanced HEV Architectures and Dynamics of HEV Powertrain

4.1 Principle of Planetary Gears

4.2 Toyota Prius and Ford Escape Hybrid Powertrain

4.3 GM Two-Mode Hybrid Transmission

4.3.1 Operating Principle of the Two-Mode Powertrain

4.3.2 Mode 0: Vehicle Launch and Backup

4.3.3 Mode 1: Low Range

4.3.4 Mode 2: High Range

4.3.5 Mode 3: Regenerative Braking

4.3.6 Transition between Modes 0, 1, 2, and 3

4.4 Dual-Clutch Hybrid Transmissions

4.4.1 Conventional DCT Technology

4.4.2 Gear Shift Schedule

4.4.3 DCT-Based Hybrid Powertrain

4.4.4 Operation of DCT-Based Hybrid Powertrain

4.4.4.1 Motor-Alone Mode

4.4.4.2 Combined Mode

4.4.4.3 Engine-Alone Mode

4.4.4.4 Regenerative Braking Mode

4.4.4.5 Power Split Mode

4.4.4.6 Standstill Charge Mode

4.4.4.7 Series Hybrid Mode

4.5 Hybrid Transmission Proposed by Zhang et al.

4.5.1 Motor-Alone Mode

4.5.2 Combined Power Mode

4.5.3 Engine-Alone Mode

4.5.4 Electric CVT Mode

4.5.5 Energy Recovery Mode

4.5.6 Standstill Mode

4.6 Renault IVT Hybrid Transmission

4.7 Timken Two-Mode Hybrid Transmission

4.7.1 Mode 0: Launch and Reverse

4.7.2 Mode 1: Low-Speed Operation

4.7.3 Mode 2: High-Speed Operation

4.7.4 Mode 4: Series Operating Mode

4.7.5 Mode Transition

4.8 Tsai’s Hybrid Transmission

4.9 Hybrid Transmission with Both Speed and Torque Coupling Mechanism

4.10 Toyota Highlander and Lexus Hybrid, E-Four-Wheel Drive

4.11 CAMRY Hybrid

4.12 Chevy Volt Powertrain

4.13 Non-Ideal Gears in the Planetary System

4.14 Dynamics of the Transmission

4.15 Conclusions

References

Chapter 5 Plug-In Hybrid Electric Vehicles

5.1 Introduction to PHEVs

5.1.1 PHEVs and EREVs

5.1.2 Blended PHEVs

5.1.3 Why PHEV?

5.1.4 Electricity for PHEV Use

5.2 PHEV Architectures

5.3 Equivalent Electric Range of Blended PHEVs

5.4 Fuel Economy of PHEVs

5.4.1 Well‐to‐Wheel Efficiency

5.4.2 PHEV Fuel Economy

5.4.3 Utility Factor

5.5 Power Management of PHEVs

5.6 PHEV Design and Component Sizing

5.7 Component Sizing of EREVs

5.8 Component Sizing of Blended PHEVs

5.9 HEV to PHEV Conversions

5.9.1 Replacing the Existing Battery Pack

5.9.2 Adding an Extra Battery Pack

5.9.3 Converting Conventional Vehicles to PHEVs

5.10 Other Topics on PHEVs

5.10.1 End-of-Life Battery for Electric Power Grid Support

5.10.2 Cold Start Emissions Reduction in PHEVs

5.10.3 Cold Weather/Hot Weather Performance Enhancement in PHEVs

5.10.4 PHEV Maintenance

5.10.5 Safety of PHEVs

5.11 Vehicle-to-Grid Technology

5.11.1 PHEV Battery Charging

5.11.2 Impact of G2V

5.11.3 The Concept of V2G

5.11.4 Advantages of V2G

5.11.5 Case Studies of V2G

5.12 Conclusion

References

Chapter 6 Special Hybrid Vehicles

6.1 Hydraulic Hybrid Vehicles

6.1.1 Regenerative Braking in HHVs

6.2 Off-Road HEVs

6.2.1 Hybrid Excavators

6.2.2 Hybrid Excavator Design Considerations

6.3 Diesel HEVs

6.4 Electric or Hybrid Ships, Aircraft, and Locomotives

6.4.1 Ships

6.4.2 Aircraft

6.4.3 Locomotives

6.5 Other Industrial Utility Application Vehicles

References

Further Reading

Chapter 7 HEV Applications for Military Vehicles

7.1 Why HEVs Can Be Beneficial for Military Applications

7.2 Ground Vehicle Applications

7.2.1 Architecture – Series, Parallel, Complex

7.2.2 Vehicles That Are of Most Benefit

7.3 Non-Ground-Vehicle Military Applications

7.3.1 Electromagnetic Launchers

7.3.2 Hybrid-Powered Ships

7.3.3 Aircraft Applications

7.3.4 Dismounted Soldier Applications

7.4 Ruggedness Issues

References

Further Reading

Chapter 8 Diagnostics, Prognostics, Reliability, EMC, and Other Topics Related to HEVs

8.1 Diagnostics and Prognostics in HEVs and EVs

8.1.1 Onboard Diagnostics

8.1.2 Prognostics Issues

8.2 Reliability of HEVs

8.2.1 Analyzing the Reliability of HEV Architectures

8.2.2 Reliability and Graceful Degradation

8.2.3 Software Reliability Issues

8.3 Electromagnetic Compatibility (EMC) Issues

8.4 Noise Vibration Harshness (NVH), Electromechanical, and Other Issues

8.5 End-of-Life Issues

References

Further Reading

Chapter 9 Power Electronics in HEVs

9.1 Introduction

9.2 Principles of Power Electronics

9.3 Rectifiers Used in HEVs

9.3.1 Ideal Rectifier

9.3.2 Practical Rectifier

9.3.3 Single-Phase Rectifier

9.3.4 Voltage Ripple

9.4 Buck Converter Used in HEVs

9.4.1 Operating Principle

9.4.2 Nonlinear Model

9.5 Non-Isolated Bidirectional DC–DC Converter

9.5.1 Operating Principle

9.5.2 Maintaining Constant Torque Range and Power Capability

9.5.3 Reducing Current Ripple in the Battery

9.5.4 Regenerative Braking

9.6 Voltage Source Inverter

9.7 Current Source Inverter

9.8 Isolated Bidirectional DC–DC Converter

9.8.1 Basic Principle and Steady State Operations

9.8.1.1 Heavy Load Conditions

9.8.1.2 Light Load Condition

9.8.1.3 Output Voltage

9.8.1.4 Output Power

9.8.2 Voltage Ripple

9.9 PWM Rectifier in HEVs

9.9.1 Rectifier Operation of Inverter

9.10 EV and PHEV Battery Chargers

9.10.1 Forward/Flyback Converters

9.10.2 Half-Bridge DC–DC Converter

9.10.3 Full-Bridge DC–DC Converter

9.10.4 Power Factor Correction Stage

9.10.4.1 Decreasing Impact on the Grid

9.10.4.2 Decreasing the Impact on the Switches

9.10.5 Bidirectional Battery Chargers

9.10.6 Other Charger Topologies

9.10.7 Contactless Charging

9.10.8 Wireless Charging

9.11 Modeling and Simulation of HEV Power Electronics

9.11.1 Device-Level Simulation

9.11.2 System-Level Model

9.12 Emerging Power Electronics Devices

9.13 Circuit Packaging

9.14 Thermal Management of HEV Power Electronics

9.15 Conclusions

References

10 Electric Machines and Drives in HEVs

10.1 Introduction

10.2 Induction Motor Drives

10.2.1 Principle of Induction Motors

10.2.2 Equivalent Circuit of Induction Motor

10.2.3 Speed Control of Induction Machine

10.2.4 Variable Frequency, Variable Voltage Control of Induction Motors

10.2.5 Efficiency and Losses of Induction Machine

10.2.6 Additional Loss in Induction Motors Due to PWM Supply

10.2.7 Field-Oriented Control of Induction Machine

10.3 Permanent Magnet Motor Drives

10.3.1 Basic Configuration of PM Motors

10.3.2 Basic Principle and Operation of PM Motors

10.3.3 Magnetic Circuit Analysis of IPM Motors

10.3.3.1 Unsaturated Motor

10.3.3.2 Saturated Motor

10.3.3.3 Operation Under Load

10.3.3.4 Flux Concentration

10.3.4 Sizing of Magnets in PM Motors

10.3.4.1 Input Power

10.3.4.2 Direct-Axis Armature Reaction Factor

10.3.4.3 Magnetic Usage Ratio and Flux Leakage Coefficient

10.3.4.4 Maximum Armature Current

10.3.4.5 Inner Power Angle

10.3.5 Eddy Current Losses in the Magnets of PM Machines

10.4 Switched Reluctance Motors

10.5 Doubly Salient Permanent Magnet Machines

10.6 Design and Sizing of Traction Motors

10.6.1 Selection of A and B

10.6.2 Speed Rating of the Traction Motor

10.6.3 Determination of the Inner Power

10.7 Thermal Analysis and Modeling of Traction Motors

10.7.1 The Thermal Resistance of the Air Gap, Rag

10.7.2 The Radial Conduction Thermal Resistance of the Rotor Core, Rrs

10.7.3 The Radial Conduction Thermal Resistance of the Poles, Rmr

10.7.4 The Thermal Resistance of the Shaft, Rshf

10.7.5 The Radial Conduction Thermal Resistance of Stator Teeth, Rst

10.7.6 The Radial Conduction Thermal Resistance of the Stator Yoke, Rsy

10.7.7 The Conduction Thermal Resistance between the Windings and the Stator, Rws

10.7.8 Convective Thermal Resistance between Windings External to the Stator and Adjoining Air, Rwa

10.8 Conclusions

References

Chapter 11 Electric Energy Sources and Storage Devices

11.1 Introduction

11.2 Characterization of Batteries

11.2.1 Battery Capacity

11.2.2 Energy Stored in a Battery

11.2.3 State of Charge in Battery (SOC) and Measurement of SOC

11.2.3.1 SOC Determination

11.2.3.2 Direct Measurement

11.2.3.3 Amp-hr Based Measurement

11.2.3.4 Some Better Methods

11.2.3.5 Initialization Process

11.2.4 Depth of Discharge (DOD) of a Battery

11.2.5 Specific Power and Energy Density

11.2.6 Ampere-Hour (Charge and Discharge) Efficiency

11.2.7 Number of Deep Cycles and Battery Life

11.2.8 Some Practical Issues About Batteries and Battery Life

11.2.8.1 Acronyms and Definitions

11.2.8.2 State of Health Issue in Batteries

11.2.8.3 Two-Pulse Load Method to Evaluate State of Health of a Battery [4, 6]

11.2.8.4 Battery Management Implementation

11.2.8.5 What to Do with All the Above Information

11.3 Comparison of Energy Storage Technologies

11.3.1 Lead Acid Battery

11.3.2 Nickel Metal Hydride Battery

11.3.3 Lithium-Ion Battery

11.4 Ultracapacitors

11.5 Electric Circuit Model for Batteries and Ultracapacitors

11.5.1 Battery Modeling

11.5.2 Electric Circuit Models for Ultracapacitors

11.6 Flywheel Energy Storage System

11.7 Fuel Cell Based Hybrid Vehicular Systems

11.7.1 Introduction to Fuel Cells

11.7.1.1 Types of Fuel Cells

11.7.2 System Level Applications

11.7.3 Fuel Cell Modeling

11.8 Summary and Discussion

References

Further Reading

Chapter 12 Battery Modeling

12.1 Introduction

12.2 Modeling of Nickel Metal Hydride (NiMH) Battery

12.2.1 Chemistry of an NiMH Battery

12.3 Modeling of Lithium-Ion (Li-Ion) Battery

12.3.1 Chemistry in Li-Ion Battery

12.4 Parameter Estimation for Battery Models

12.5 Example Case of Using Battery Model in an EV System

12.6 Summary and Observations on Modeling and Simulation for Batteries

References

Further Reading

Chapter 13 EV and PHEV Battery Charger Design

13.1 Introduction

13.2 Main Features of the LLC Resonant Charger

13.2.1 Analysis in the Time Domain

13.2.2 Operation Modes and Distribution Analysis

13.3 Design Considerations for an LLC Converter for a PHEV Battery Charger

13.4 Charging Trajectory Design

13.4.1 Key Design Parameters

13.4.2 Design Constraints

13.5 Design Procedures

13.6 Experimental Results

13.7 Conclusions

References

Chapter 14 Modeling and Simulation of Electric and Hybrid Vehicles

14.1 Introduction

14.2 Fundamentals of Vehicle System Modeling

14.3 HEV Modeling Using ADVISOR

14.4 HEV Modeling Using PSAT

14.5 Physics-Based Modeling

14.5.1 RCF Modeling Technique

14.5.2 Hybrid Powertrain Modeling

14.5.3 Modeling of a DC Machine

14.5.4 Modeling of DC–DC Boost Converter

14.5.5 Modeling of Vehicle Dynamics

14.5.6 Wheel Slip Model

14.6 Bond Graph and Other Modeling Techniques

14.6.1 Bond Graph Modeling for HEVs

14.6.2 HEV Modeling Using PSIM

14.6.3 HEV Modeling Using Simplorer and V-Elph

14.7 Consideration of Numerical Integration Methods

14.8 Conclusion

References

Chapter 15 HEV Component Sizing and Design Optimization

15.1 Introduction

15.2 Global Optimization Algorithms for HEV Design

15.2.1 DIRECT

15.2.2 Simulated Annealing

15.2.2.1 Algorithm Description

15.2.2.2 Tunable Parameters

15.2.2.3 Flow Chart

15.2.3 Genetic Algorithms

15.2.3.1 Flow Chart

15.2.3.2 Operators and Selection Method

15.2.3.3 Tunable Parameters

15.2.4 Particle Swarm Optimization

15.2.4.1 Algorithm Description

15.2.4.2 Flow Chart

15.2.5 Advantages/Disadvantages of Different Optimization Algorithms

15.2.5.1 DIRECT

15.2.5.2 SA

15.2.5.3 GA

15.2.5.4 PSO

15.3 Model-in-the-Loop Design Optimization Process

15.4 Parallel HEV Design Optimization Example

15.5 Series HEV Design Optimization Example

15.5.1 Control Framework of a Series HEV Powertrain

15.5.2 Series HEV Parameter Optimization

15.5.3 Optimization Results

15.6 Conclusion

References

Chapter 16 Wireless Power Transfer for Electric Vehicle Applications

16.1 Introduction

16.2 Fundamental Theory

16.3 Magnetic Coupler Design

16.3.1 Coupler for Stationary Charging

16.3.2 Coupler for Dynamic Charging

16.4 Compensation Network

16.5 Power Electronics Converters and Power Control

16.6 Methods of Study

16.7 Additional Discussion

16.7.1 Safety Concerns

16.7.2 Vehicle to Grid Benefits

16.7.3 Wireless Communications

16.7.4 Cost

16.8 A Double-Sided LCC Compensation Topology and its Parameter Design

16.8.1 The Double-Sided LCC Compensation Topology

16.8.2 Parameter Tuning for Zero Voltage Switching

16.8.3 Parameter Design

16.8.4 Simulation and Experiment Results

16.8.4.1 Simulation Results

16.8.4.2 Experimental Results

16.9 An LCLC Based Wireless Charger Using Capacitive Power Transfer Principle

16.9.1 Circuit Topology Design

16.9.2 Capacitance Analysis

16.9.3 A 2.4 kW CPT System Design

16.9.4 Experiment

16.10 Summary

References

Chapter 17 Vehicular Power Control Strategy and Energy Management

17.1 A Generic Framework, Definition, and Needs

17.2 Methodology to Implement

17.2.1 Methodologies for Optimization

17.2.2 Cost Function Optimization

17.3 Benefits of Energy Management

References

Further Reading

Chapter 18 Commercialization and Standardization of HEV Technology and Future Transportation

18.1 What Is Commercialization and Why Is It Important for HEVs?

18.2 Advantages, Disadvantages, and Enablers of Commercialization

18.3 Standardization and Commercialization

18.4 Commercialization Issues and Effects on Various Types of Vehicles

18.5 Commercialization of HEVs for Trucks and Off‐Road Applications

18.6 Commercialization and Future of HEVs and Transportation

Further Reading

Chapter 19 A Holistic Perspective on Vehicle Electrification

19.1 Vehicle Electrification – What Does it Involve?

19.2 To What Extent Should Vehicles Be Electrified?

19.3 What Other Industries Are Involved or Affected in Vehicle Electrification?

19.4 A More Complete Picture Towards Vehicle Electrification

19.5 The Ultimate Issue: To Electrify Vehicles or Not?

Further Reading

Index

EULA

The users who browse this book also browse