Dynamic Covalent Chemistry :Principles, Reactions, and Applications

Publication subTitle :Principles, Reactions, and Applications

Author: Wei Zhang   Yinghua Jin  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9781119075714

P-ISBN(Paperback): 9781119075639

Subject: O641.3 intermolecular interaction, Supramolecular Chemistry

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.3.1.3 C–O Bonds

1.3.1.4 C–S Bonds

1.3.1.5 S–S Bonds and Se–Se Bonds

1.3.1.6 B–O Bonds

1.3.1.7 N–X Bonds

1.3.2 Other Dynamic Reaction Types

1.3.2.1 Dynamic Covalent Pericyclic Reactions

1.3.2.2 Dynamic Covalent Radical Reactions

1.4 Conclusions

References

Chapter 2 Dynamic Combinatorial Libraries

2.1 Introduction

2.1.1 A Short History of DCLs

2.1.2 Terminology

2.1.3 Theoretical Considerations

2.2 Template-controlled DCLs

2.2.1 Receptors for Small Molecules and Ions

2.2.1.1 Inorganic Cations

2.2.1.2 Inorganic Anions

2.2.1.3 Biologically Relevant Small Molecules

2.2.1.4 Miscellaneous Organic Molecules

2.2.2 Ligands for Biomolecules

2.2.2.1 Protein Inhibitors

2.2.2.2 Nucleic Acids

2.2.3 Catalysis

2.2.4 Self/Cross-templating and Replicators

2.2.5 Interlocked Structures from DCLs

2.2.6 Folding

2.3 Controlling DCLs by Physical Means

2.3.1 Solvent Environment

2.3.2 Light

2.3.3 Temperature

2.3.4 Mechanical Force

2.4 Multiphase DCLs

2.4.1 Multiple Liquid Phases

2.4.2 Transport

2.4.3 Amphiphiles

2.4.4 Surface-liquid Interfaces

2.4.4.1 Resins

2.4.4.2 Nanoparticles

2.4.4.3 Flat Surfaces

2.4.5 Kinetically Controlled Phase Transfer

2.5 Other Applications of DCLs

2.5.1 Information Acquisition and Processing

2.5.2 Self-synthesizing Materials

2.6 Non-equilibrium DCLs

2.7 Analysis of DCLs

2.7.1 Liquid and Gas Chromatography

2.7.2 Mass Spectrometry

2.7.3 NMR Spectroscopy

2.7.4 Optical Spectroscopy

2.7.5 Microscopy Techniques

2.7.6 Diffraction and Scattering Techniques

2.7.7 Calculations

2.8 Conclusions and Outlook

References

Chapter 3 Shape-persistent Macrocycles through Dynamic Covalent Reactions

3.1 Introduction and Importance of Shape-persistent Macrocycles

3.2 Thermodynamic Approach vs. Kinetic Approach

3.3 Macrocycles through Alkyne Metathesis

3.3.1 Monomer-to-Macrocycle Strategy

3.3.1.1 Homo-sequenced Symmetrical Macrocycles

3.3.1.2 Hetero-sequenced Macrocycles

3.3.2 Mechanism Study of the Cyclooligomerization Process

3.3.3 Polymer-to-Macrocycle Strategy

3.4 Macrocycles through Imine Metathesis

3.4.1 Salphen-containing Macrocycles

3.4.1.1 Synthesis

3.4.1.2 Coordination with Metal Ions

3.4.2 Other Imine-linked Macrocycles

3.5 Macrocycles through Olefin Metathesis

3.6 Macrocycles through Boronate Ester Formation

3.7 Macrocycles through Orthogonal Dynamic Covalent Reactions

3.8 Conclusions and Outlook

References

Chapter 4 Organic Cages through Dynamic Covalent Reactions

4.1 Introduction

4.2 Synthesis of Organic Molecular Cages

4.2.1 OMCs Synthesized through Imine Reaction

4.2.2 OMCs Synthesized through Boronic Acid Condensation

4.2.3 OMCs Synthesized through Alkene/Alkyne Metathesis

4.2.4 OMCs Synthesized through Other Reactions

4.3 Functionalization of Organic Molecular Cages

4.4 Applications of Organic Molecular Cages

4.4.1 Molecular Recognition

4.4.2 Molecular Flask

4.4.3 Porous Solid

4.4.4 Porous Liquid

4.5 Conclusion and Perspective

References

Chapter 5 Orthogonal Dynamic Covalent and Non-covalent Reactions

5.1 Introduction

5.2 Orthogonal Dynamic Covalent Chemical Reactions

5.2.1 Imine and Disulfide Bonds

5.2.2 Imine and Boronate Ester Bonds

5.2.3 Hydrazone and Disulfide Bonds

5.2.4 Disulfide and Thioester Bonds

5.2.5 Imine and Alkene Bonds

5.2.6 Disulfide and Alkene Bonds

5.2.7 Disulfide, Thioester, and Hydrazone Bonds

5.3 Dynamic Covalent Reactions and Hydrogen Bonding

5.3.1 Imine, Hydrazone, and Hydrogen Bonding

5.3.2 Disulfide and Hydrogen Bonding

5.3.3 Alkene Metathesis and Hydrogen Bonding

5.4 Imine and Hydrazone, π-Stacking, and Donor–Acceptor Interaction

5.5 Disulfide, π-Stacking, and/or Donor–Acceptor Interaction

5.6 Disulfide, Hydrazone, and π-Stacking Interaction

5.7 Hydrazone, Boronate, and π-Stacking Interaction

5.8 Concluding Remarks

References

Chapter 6 Self-sorting through Dynamic Covalent Chemistry

6.1 Definition of Self-sorting

6.2 Thermodynamically Controlled Self-sorting

6.2.1 Purely Organic Systems

6.2.2 Metal–Organic Systems

6.3 Kinetically Controlled Self-sorting

6.3.1 Self-sorting of Dynamic Libraries during Irreversible Chemical Reactions

6.3.2 Self-sorting of Dynamic Libraries under Physical Stimuli

6.4 Conclusions and Outlook

References

Chapter 7 Dynamic Covalent Chemistry for Synthetic Molecular Machines

7.1 Introduction

7.2 Molecular Machines Assembled by Dynamic Covalent Chemistry

7.2.1 Mechanically Interlocked Molecular Machines

7.2.1.1 By Imine Chemistry

7.2.1.2 By Disulfide Bond Formation

7.2.1.3 By Olefin Metathesis

7.2.1.4 By Iodide-catalyzed DCvC

7.2.2 Non-interlocked Molecular Machines

7.2.2.1 Imine-based Motors

7.2.2.2 Imine-based Switches

7.2.2.3 Hydrazone-based Switches

7.3 Molecular Machines Operated by DCvC

7.3.1 Molecular Shuttles

7.3.2 Molecular Walkers

7.4 Concluding Remarks and Outlook

References

Chapter 8 Responsive Dynamic Covalent Polymers

8.1 Introduction

8.2 Thermoresponsive Polymers

8.2.1 Polymers Possessing Critical Solution Temperatures

8.2.2 Polymers Possessing Thermo-labile Chemical Linkages

8.2.2.1 Polymers Containing Alkoxyamine Linkages

8.2.2.2 Polymers Containing Diels–Alder Linkages

8.3 Photo-responsive Polymers

8.4 Mechano-responsive Polymers

8.5 pH- and Chemo-responsive Polymers

8.5.1 Polymers Containing Acyl Hydrazone Links

8.5.2 Polymers Containing Imine Linkages

8.5.3 Polymers Containing Oxime Links

8.5.4 Polymers Containing Disulfide Links

8.5.5 Glucose-responsive Polymers

8.6 Conclusion

References

Chapter 9 Self-healing Polymers through Dynamic Covalent Chemistry

9.1 Introduction

9.2 Reversible Condensation Reactions

9.2.1 Acylhydrazone Bonds

9.2.2 Imine Bonds

9.2.3 Boronate Ester Linkages

9.2.4 Hemiaminal Linkages

9.3 Reversible Addition Reactions

9.3.1 Diels–Alder Reaction

9.3.2 Urea Bonds

9.4 Catalyzed Exchange Reactions

9.4.1 Transesterification

9.4.2 Olefin Metathesis

9.4.3 Siloxane Chemistry

9.5 Radical Transfer and Crossover Reactions

9.5.1 Disulfide and Diselenide Bonds

9.5.2 Thiuram Disulfide Bonds

9.5.3 Trithiocarbonate Linkages

9.6 Homolytic Bond Cleavage and Re-formation

9.6.1 Alkoxyamine Linkages

9.6.2 Diarylbibenzofuranone Linkages

9.7 Conclusions

References

Chapter 10 Emerging Applications of Dynamic Covalent Chemistry from Macro- to Nanoscopic Length Scales

10.1 Introduction

10.2 Rearrangeable Polymer Networks

10.2.1 Stress Relaxation and Shape Modification

10.2.2 Reversible Self-healing

10.2.3 Overcoming the Limitations of Dynamic Covalent Healable Materials

10.3 Biotechnological Applications

10.3.1 Kinase Inhibitors

10.3.2 Micelles

10.3.3 Targeting and Transport

10.3.4 Dynamic Covalent Gels: Self-healing and Drug Delivery/Transport

10.3.5 Nucleic Acid Probes

10.4 Other Applications

10.4.1 Organic Electronics

10.4.2 Gas Storage/Capture

10.4.3 Catalysis

10.4.4 Molecular Separations

10.4.5 Surface Science

10.4.6 Color-changing Materials

10.4.7 Food Chemistry

10.4.8 Fluoride-catalyzed Silsesquioxane Bond Rearrangement

10.5 Conclusion

References

Index

EULA

The users who browse this book also browse