Natural Products Targeting Clinically Relevant Enzymes

Author: Paula B. Andrade   Patrícia Valentão   David M. Pereira  

Publisher: John Wiley & Sons Inc‎

Publication year: 2017

E-ISBN: 9783527805914

P-ISBN(Paperback): 9783527342051

Subject: Q55 enzyme

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.3.3 New Targets?/Drug Repurposing

1.4 Conclusion

References

Chapter 2 Molecular Targets of Clinically Relevant Natural Products from Filamentous Marine Cyanobacteria

2.1 Introduction

2.2 Histone Deacetylase Inhibitors

2.2.1 Largazole

2.2.2 Santacruzamate A

2.3 Proteasome Inhibitors

2.3.1 Carmaphycins

2.4 Protease Enzymes

2.4.1 Serine Protease Inhibitors

2.4.2 Falcipain Inhibitors

2.4.2.1 Gallinamide A

2.4.3 Cathepsin Inhibitors

2.4.4 β‐Secretase 1 (BACE1) Inhibitors

2.4.4.1 Tasiamide B

2.5 Protein Kinase C Modulators

2.5.1 Aplysiatoxins

2.6 Interference of the Actin and Microtubule Filaments

2.6.1 Dolastatins 10/15

2.6.2 Bisebromoamide

2.7 Sec61 Protein Translocation Channel Inhibitors

2.7.1 Apratoxin A

2.8 Prohibitin Inhibitors

2.8.1 Aurilide

2.9 Sodium Channels Modulators

2.10 Conclusions

References

Chapter 3 Natural Angiotensin Converting Enzyme (ACE) Inhibitors with Antihypertensive Properties

3.1 Introduction

3.2 Mechanisms of Blood Pressure Regulation

3.2.1 Renin–Angiotensin–Aldosterone System

3.3 The Treatment of Hypertension

3.3.1 Angiotensin Converting Enzyme Inhibitors

3.4 Natural Products as Angiotensin Converting Enzyme Inhibitors

3.4.1 Polyphenols

3.4.2 Protein Derived Peptides

3.5 Conclusions

References

Chapter 4 Phospholipase A2 Inhibitors of Marine Origin

4.1 Relevance of Marine Organisms

4.2 Inflammation

4.2.1 Phospholipase A2

4.3 Marine Molecules as PLA2 Inhibitors

4.3.1 Sponge‐Derived Metabolites

4.3.2 Metabolites from Other Organisms

4.4 Conclusion

References

Chapter 5 β-Secretase (BACE1) Inhibitors from Natural Products

5.1 Introduction

5.2 Flavonoids

5.2.1 Flavones, Flavonols and Flavone Glycosides

5.2.2 Dihydroflavonoids

5.2.3 Biflavonoids

5.2.4 Chalcones

5.2.5 Isoflavonoids

5.2.6 Catechins

5.2.7 Xanthones

5.3 Chromones

5.4 Phenolic Acids and Tannins

5.4.1 Phenol Acids

5.4.2 Tannins

5.4.3 Simple Phenol Derivatives and Polyphenols

5.5 Stilbenes and Derivatives

5.6 Coumarins

5.7 Benzoquinones and Anthraquinones

5.8 Alkaloids

5.9 Terpenes

5.10 Lignans

5.11 Fatty Acid

5.12 Saccharides, Peptides and Amino Acid Derivatives

5.13 BACE1 Inhibitory Active Extracts of Natural Products

5.14 Bioassays for the Discovery of BACE1 Inhibitors

5.15 Prospective

Acknowledgements

References

Chapter 6 Hypoglycaemic Effects of Plants Food Constituents via Inhibition of Carbohydrate-Hydrolysing Enzymes: From Chemistry to Future Applications

6.1 Introduction

6.2 α-Amylase

6.3 α-Glucosidase

6.4 Hypoglycaemic Natural Compounds

6.4.1 Flavonoids

6.4.2 Phenolic Acids

6.4.3 Terpenoids

6.4.4 Alkaloids

6.4.5 Tannins

6.4.5.1 Ellagitannins

6.4.6 Miscellaneous

6.5 Conclusions and Future Perspective

Abbreviations

References

Chapter 7 Natural Products Targeting Clinically Relevant Enzymes of Eicosanoid Biosynthesis Implicated in Inflammation and Cancer

7.1 Introduction

7.2 Eicosanoid Biosynthetic Pathways

7.2.1 Phospholipases

7.2.2 Cyclooxygenases

7.2.3 Lipoxygenases

7.2.4 Cytochrome P450 (CYP)‐dependent Monooxygenases

7.3 Eicosanoid Biosynthetic Pathways in Inflammation and Cancer

7.3.1 Role of PLA2s in Inflammation and Cancer

7.3.2 Role of COXs in Inflammation and Cancer

7.3.3 Role of LOXs in Inflammation and Cancer

7.3.4 Role of CYP‐dependent Monooxygenases in Inflammation and Cancer

7.4 Natural Products as Anti-inflammatory Agents

7.4.1 Natural Products from Plant Origin

7.4.1.1 Baicalein

7.4.1.2 Berberine

7.4.1.3 Chebulagic Acid

7.4.1.4 Curcumin

7.4.1.5 Ellagic Acid

7.4.1.6 Epigallocatechin‐3‐Gallate

7.4.1.7 Eugenol

7.4.1.8 Fisetin

7.4.1.9 Gallic Acid

7.4.1.10 Genistein

7.4.1.11 Guggulsterone

7.4.1.12 Piperine

7.4.1.13 Quercetin

7.4.1.14 Resveratrol

7.4.1.15 Silibinin

7.4.1.16 Terpenoids

7.4.1.17 Triptolids

7.4.1.18 Ursolic Acid (UA)

7.4.2 Natural Products from Marine Origin

7.4.2.1 Axinelline A

7.4.2.2 Scalaradial

7.4.2.3 Tetrapetalone

7.4.3 Natural Products from Microorganisms

7.4.3.1 C‐Phycocyanin

7.4.3.2 Kojic Acid

7.4.3.3 Lobaric Acid

7.5 Conclusions and Future Directions

References

Chapter 8 Anti-HIV Natural Products

8.1 Introduction

8.2 Ribosome-Inactivating Proteins

8.3 Reverse Transcriptase Inhibitors

8.3.1 Antifungal Proteins

8.3.2 Defensins and Defensin‐Like Anti‐Fungal Peptides

8.3.3 Cathelicidins

8.3.4 Whey Proteins and Peptides

8.3.5 Proteases and Protease Inhibitors

8.3.6 Lectins

8.3.7 Laccases and Ribonucleases

8.3.8 Polysaccharides and Polysaccharopeptides

8.3.9 Other HIV‐Reverse Transcriptase Inhibitors

8.4 Inhibitors of HIV Reverse Transcriptase Associated RNase H

8.5 HIV-1 Protease Inhibitors

8.6 HIV-1 Integrase Inhibitors

8.7 Discussion

Acknowledgements

References

Chapter 9 Natural Inhibitors of Mitochondrial Respiratory Chain: Therapeutic and Toxicological Implications

9.1 Introduction: The Structure of the Electron Transport Chain

9.2 Natural Inhibitors of the Respiratory Chain

9.2.1 Complex I Inhibitors

9.2.1.1 Acetogenins from Annonaceae as Complex I Inhibitors

9.2.2 Complex II Inhibitors

9.2.3 Complex III Inhibitors

9.2.4 Complex IV Inhibitors

9.2.5 Complex V Inhibitors

9.3 Therapeutic, Agrochemical and Toxicological Implications

9.3.1 ETC Inhibitors as Fungicides

9.3.2 ETC Inhibitors as Insecticides, Acaricides, and Anthelmintic Agents

9.3.3 ETC Inhibitors with Activity Against Protozoan Parasites

9.3.4 Diabetes and ETC Inhibition

9.3.5 ETC Inhibition as a Therapeutic Strategy in Cancer

9.3.5.1 Mechanistic Insights on the Anti‐Tumour Properties of ETC Inhibitors

9.3.6 Toxicological Implications of ETC Inhibition

9.3.6.1 Neurotoxicity and ETC Inhibition

9.3.6.2 Other Toxicity Aspects of ETC Inhibition

9.4 Conclusions

References

Chapter 10 Targeting Enzymatic Pathways with Marine-Derived Clinical Agents

10.1 Marine Environment as an Established Source of Drug Candidates

10.2 Enzyme-Targeting Derived Effects of Marine-Derived Approved Drugs

10.3 Marine-Derived Agents in Clinical Development Targeting Relevant Enzymatic Pathways

10.4 Concluding Remarks

Acknowledgements

References

Chapter 11 Anti-Malarial Drug Discovery: New Enzyme Inhibitors

11.1 Introduction

11.2 Falcipain (FP-2) Inhibitors

11.3 Purine Nucleoside Phosphorylase Inhibitors (PNP)

11.4 Dihydrofolate Reductase (DHFR) and Thymidylate Synthase (TS) Inhibitors

11.5 Hypoxanthine-Guanine-(Xanthine) Phosphoribosyltransferase Inhibitors

11.6 Conclusion

Acknowledgement

References

Chapter 12 Natural Plant-Derived Acetylcholinesterase Inhibitors: Relevance for Alzheimer’s Disease

12.1 Introduction

12.2 Natural Acetylcholinesterase Inhibitors

12.2.1 Alkaloid Acetylcholinesterase Inhibitors

12.2.1.1 Rutaceae

12.2.1.2 Nelumbonaceae

12.2.1.3 Papaveraceae

12.2.1.4 Menispermaceae

12.2.1.5 Magnoliaceae

12.2.1.6 Apocynaceae

12.2.1.7 Amaryllidaceae

12.2.1.8 Lycopodiaceae

12.2.1.9 Buxaceae

12.2.1.10 Liliaceae

12.2.2 Non‐Alkaloid Acetylcholinesterase Inhibitors

12.2.2.1 Asparagaceae

12.2.2.2 Chenopodiaceae

12.2.2.3 Clusiaceae

12.2.2.4 Gentianaceae

12.2.2.5 Fabaceae

12.2.2.6 Lamiaceae

12.2.2.7 Moraceae

12.2.2.8 Iridaceae

12.2.2.9 Zygophyllaceae

12.2.2.10 Sterculiaceae

12.2.2.11 Combretaceae

12.2.2.12 Myristicaceae

12.2.2.13 Anacardiaceae

12.2.2.14 Nelumbonaceae

12.3 Conclusion

Acknowledgements

References

Index

EULA

The users who browse this book also browse


No browse record.