Petroleum Refinery Process Modeling :Integrated Optimization Tools and Applications

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

Chapter 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

1.1 Crude Assay

1.1.1 Bulk Properties

1.1.2 Fractional Properties

1.1.3 Interconversion of Distillation Curves

1.2 Boiling Point‐Based Hypothetical or Pseudocomponent Generation

1.3 Workshop 1.1 – Interconvert Distillation Curves

1.4 Workshop 1.2 – Extrapolate an Incomplete Distillation Curve

1.5 Workshop 1.3 – Calculate MeABP of a Given Assay

1.6 Workshop 1.4 – Represent an Oil Fraction by the Old Oil Manager in Aspen HYSYS Petroleum Refining

1.7 Workshop 1.5– Represent an Oil Fraction by the New Petroleum Assay Manager in Aspen HYSYS Petroleum Refining

1.8 Workshop 1.6 – Conversion from the Oil Manager to Petroleum Assay Manager and Improvements of the Petroleum Assay Manager over the Oil Manager

1.9 Property Requirements for Refinery Process Models

1.10 Physical Properties

1.10.1 Estimating Minimal Physical Properties for Pseudocomponents

1.10.2 Molecular Weight

1.10.3 Critical Properties

1.10.4 Liquid Density

1.10.5 Ideal Gas Heat Capacity

1.10.6 Other Derived Physical Properties

1.11 Process Thermodynamics

1.11.1 Process Thermodynamics

1.11.2 Mixed or Activity Coefficient‐Based Approach

1.11.3 Equation‐of‐State Approach

1.12 Miscellaneous Physical Properties for Refinery Modeling

1.12.1 Two Approaches for Estimating Fuel Properties

1.12.2 Flash Point

1.12.3 Freeze Point

1.12.4 PNA Composition

1.13 Conclusion

Nomenclature

Bibliography

Chapter 2 Atmospheric or Crude Distillation Unit (CDU)

2.1 Introduction

2.2 Scope of the Chapter

2.3 Process Overview

2.3.1 Desalting

2.3.2 Preheat Train and Heat Recovery

2.3.3 Atmospheric Distillation

2.4 Model Development

2.4.1 MESH Equations

2.4.2 Overall Column Efficiency and Murphree Stage Efficiency

2.4.3 Recommendation for Correctly Handling the Efficiency

2.4.4 Inside‐Out Algorithm for Distillation Column Calculation Convergence

2.5 Feed Characterization

2.6 Data Requirements and Validation

2.7 A Representative Atmospheric Distillation Unit

2.8 Building the Model in Aspen HYSYS Petroleum Refining

2.8.1 Entering the Crude Information

2.8.2 Selection of a Thermodynamic Model

2.8.3 Crude Charge and Prefractionation Units

2.8.4 Atmospheric Distillation Column – Initial

2.8.5 Atmospheric Distillation Column – Side Strippers

2.8.6 Atmospheric Distillation Column – Pumparounds

2.8.7 Atmospheric Distillation Column – Adding Custom Stream Properties

2.8.8 Post‐Convergence

2.9 Results

2.10 Model Applications to Process Optimization

2.10.1 Improve the 5% Distillation Point for an Individual Cut

2.10.2 Change Yield of a Given Cut

2.10.3 Workshop 2.1 – Perform Case Studies to Quantify the Effects of Stripping Steam Rate and Product Draw Rate

2.11 Workshop 2.2 – Rebuild Model Using "Backblending" Procedure

2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager

2.11.2 Define a New Blend of the Backblended Crude Feed

2.11.3 Build the CDU Model Based on the Backblended Feed

2.11.4 Converging Column Model

2.11.5 Comparison of Results

2.12 Workshop 2.3 – Investigate Changes in Product Profiles with New Product Demands

2.12.1 Update Column Specifications

2.12.2 Vary Draw Rate of LGO

2.13 Workshop 2.4 – Investigate the Effects of Process Variables on Product Qualities

2.14 Workshop 2.5 – Application of Column Internal Tools (Column Hydraulic Analysis)

2.15 Workshop 2.6 – Application of the Petroleum Distillation Column

2.16 Conclusions

Nomenclature

Bibliography

Chapter 3 Vacuum Distillation Unit

3.1 Process Description

3.2 Plant Data Reconciliation

3.2.1 Required Data

3.2.2 Representation of the Atmospheric Residue

3.2.3 Makeup of Gas Streams

3.3 Model Implementation

3.3.1 Plant Data and Modeling Approaches

3.3.2 Workshop 3.1 – Build the Simplified VDU Model

3.3.3 Workshop 3.2 – Build the Rigorous Model from a Simplified Model

3.4 Model Application – VDU Deep‐Cut Operation

3.5 Workshop 3.3 – Simulation of the VDU Deep‐Cut Operation

Bibliography

Chapter 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

4.1 Introduction

4.2 Process Description

4.2.1 Riser–Regenerator Complex

4.2.2 Downstream Fractionation

4.3 Process Chemistry

4.4 Literature Review

4.4.1 Kinetic Models

4.4.2 Unit‐Level Models

4.5 Aspen HYSYS Petroleum Refining FCC Model

4.5.1 Slip Factor and Average Voidage

4.5.2 21‐Lump Kinetic Model

4.5.3 Catalyst Deactivation

4.6 Calibrating the Aspen HYSYS Petroleum Refining FCC Model

4.7 Fractionation

4.8 Mapping Feed Information to Kinetic Lumps

4.8.1 Fitting Distillation Curves

4.8.2 Inferring Molecular Composition

4.8.3 Convert Kinetic Lumps to Fractionation Lumps

4.9 Overall Modeling Strategy

4.10 Results

4.11 Applications

4.11.1 Improving Gasoline Yield

4.11.2 Increasing Unit Throughput

4.11.3 Sulfur Content in Gasoline

4.12 Refinery Planning

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining

4.13.1 Introduction

4.13.2 Process Overview

4.13.3 Process Data

4.13.4 Aspen HYSYS and Initial Component and Thermodynamics Setup

4.13.5 Basic FCC Model

4.13.6 FCC Feed Configuration

4.13.7 FCC Catalyst Configuration

4.13.8 FCC Operating Variable Configuration

4.13.9 Initial Model Solution

4.13.10 Viewing Model Results

4.14 Workshop 4.2 – Calibrating Basic FCC Model

4.15 Workshop 4.3 – Build the Model for Main Fractionator and Gas Plant System

4.15.1 T201_MainFractionator

4.15.2 Overhead Wet Gas System, Primary Stripper Column T302_Stripper, and Debutanizer or Gasoline Stabilization Column T304_Stabilizer

4.15.3 T301_Absorber, Primary Absorber and T303_ReAbsorber, Sponge Oil Absorber, or Reabsorption Column

4.16 Workshop 4.4 – Perform Case Studies to Quantify Effects of Key FCC Operating Variables

4.17 Workshop 4.5 – Generate Delta‐Base Vectors for Linear Programming (LP)‐Based Planning

4.18 Conclusions

Nomenclature

Bibliography

Chapter 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process

5.1 Introduction

5.2 Process Overview

5.3 Process Chemistry

5.4 Literature Review

5.4.1 Kinetic Models and Networks

5.4.2 Unit‐Level Models

5.5 Aspen HYSYS Petroleum Refining Catalytic Reformer Model

5.6 Thermophysical Properties

5.7 Fractionation System

5.8 Feed Characterization

5.9 Model Implementation

5.9.1 Data Consistency

5.9.2 Feed Characterization

5.9.3 Calibration

5.10 Overall Modeling Strategy

5.11 Results

5.12 Applications

5.12.1 Effect of Reactor Temperature on Process Yields

5.12.2 Effect of Feed Rate on Process Yields

5.12.3 Combined Effects on Process Yields

5.12.4 Effect of Feedstock Quality on Process Yields

5.12.5 Chemical Feedstock Production

5.12.6 Energy Utilization and Process Performance

5.13 Refinery Production Planning

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining

5.14.1 Introduction

5.14.2 Process Overview and Relevant Data

5.14.3 Aspen HYSYS and Initial Component and Thermodynamic Setup

5.14.4 Basic Reformer Configuration

5.14.5 Input Feedstock and Process Variables

5.14.6 Solver Parameters and Running the Initial Model

5.14.7 Viewing Model Results

5.14.8 Updating Results with Molecular Composition Information

5.15 Workshop 5.2. – Model Calibration

5.16 Workshop 5.3 – Build a Downstream Fractionation System

5.17 Workshop 5.4. – Case Study to Vary RON and Product Distribution Profile

5.18 Conclusion

Nomenclature

Bibliography

Chapter 6 Predictive Modeling of the Hydroprocessing Units

6.1 Introduction

6.2 Aspen HYSYS Petroleum Refining HCR Modeling Tool

6.3 Process Description

6.3.1 MP HCR Process

6.3.2 HP HCR Process

6.4 Model Development

6.4.1 Workflow of Developing an Integrated HCR Process Model

6.4.2 Data Acquisition

6.4.3 Mass Balance

6.4.4 Reactor Model Development

6.4.4.1 MP HCR Reactor Model

6.4.4.2 HP HCR Reactor Model

6.4.5 Delumping of the Reactor Model Effluent and Fractionator Model Development

6.4.5.1 Applying the Gauss–Legendre Quadrature to Delump the Reactor Model Effluent

6.4.5.2 Key Issue of the Building Fractionator Model – Overall Stage Efficiency Model

6.4.5.3 Verification of the Delumping Method – Gaussian–Legendre Quadrature

6.4.6 Product Property Correlation

6.5 Modeling Results of MP HCR Process

6.5.1 Performance of the Reactor and Hydrogen Recycle System

6.5.2 Performance of Fractionators

6.5.3 Product Yields

6.5.4 Distillation Curves of Liquid Products

6.5.5 Product Property

6.6 Modeling Results of HP HCR Process

6.6.1 Performance of the Reactor and Hydrogen Recycle System

6.6.2 Performance of Fractionators

6.6.3 Product Yields

6.6.4 LPG Composition and Distillation Curves of Liquid Products

6.6.5 Product Property

6.7 Model Applications

6.7.1 H2-to-Oil Ratio versus Product Distribution, Remained Catalyst Life, and Hydrogen Consumption

6.7.2 WART Versus Feed Flow Rate Versus Product Distribution

6.8 Model Application – Delta‐Base Vector Generation

6.9 Workshop 6.1 – Build a Preliminary Reactor Model of HCR Process

6.10 Workshop 6.2 – Calibrate Preliminary Reactor Model to Match Plant Data

6.11 Workshop 6.3 – Case Studies

6.12 Workshop 6.4 – Fractionation System for HCR Reactor

6.13 Conclusion

Nomenclature

Bibliography

Chapter 7 Alkylation, Delayed Coking, and Refinery‐Wide Simulation

7.1 Alkylation

7.1.1 Process Description

7.1.2 Feed Components and Alkylation Kinetics

7.1.3 Workshop 7.1 – Hydrofluoric Acid Alkylation Process Simulation

7.2 Delayed Coking

7.2.1 Process Description

7.2.2 Feed Characterization, Kinetic Lumps, and Coking Reaction Kinetics

7.2.3 Workshop 7.2 – Simulation and Calibration of a Delayed Coking Process

7.2.4 Workshop 7.3 – Simplified Model of Delayed Coker by Petroleum Shift Reactor for Production Planning Applications

7.3 Refinery‐Wide Process Simulation

7.3.1 Refinery‐Wide Process Model: A Key to Integrating Process Modeling and Production Planning

7.3.2 An Example of a Refinery‐Wide Process Simulation Model

7.3.3 Tools for Developing Refinery‐Wide Process Models

7.3.4 Deployment and Applications of the Refinery‐Wide Process Models for Process Engineering and Production Planning

7.4 Conclusions

Bibliography

A List of Computer Files

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A List of Computer Files

Index

EULA

The users who browse this book also browse