Chapter
1.3.1 The Langmuir Isotherm (1918)
1.3.2 The Linear Isotherm
1.3.3 The Brunauer–Emmett–Teller (BET) Isotherm (1938)
1.3.4 The Freundlich Isotherm (1906)
1.3.5 The Sips (Langmuir–Freundlich) Isotherm (1948)
1.3.6 The Toth Isotherm (1971)
1.4 The Properties of Packed Beds
1.4.4.2 Skeletal or Solid Density
1.4.4.3 Envelope or Particle Density
1.5 PSA and TSA Implementation Details
1.5.1 Common Adsorbent Characteristics
1.5.2 Common Process Configurations
1.6 Introduction to Aspen Adsorption
1.7 PSA Workshop: Aspen Adsorption Modeling for Air Separation
1.7.1 Adding Components to an Aspen Adsorption Simulation
1.7.2 Creating a Flowsheet in Aspen Adsorption
1.7.3 Specifying Operating Conditions: Tables and Forms
1.7.4 Scheduling Events with the Cycle Organizer
1.7.5 Running an Aspen Simulation
1.7.6 Viewing and Exporting Simulation Results
1.8 PSA Workshop: Hydrogen Separation in Aspen Adsorption
1.8.1 Define the Components and Property Model
1.8.2 Creating a Flowsheet in Aspen Adsorption
1.8.3 Run a Breakthrough Simulation
1.8.4 Create the PSA Flowsheet
1.9 PSA Workshop: Modeling Hydrogen Separation using gCSS
1.9.1 Define the Components and Property Models
1.9.2 Working with Model Libraries: Advanced Flowsheet Options
1.9.3 Introduction to Scripting: Set Repeated Values and Initialize Blocks
1.9.4 Inspecting Blocks: Advanced Operating Conditions
1.9.5 Defining the Cycle Organizer
1.10 TSA Workshop: Temperature Swing Adsorption for Air Drying
1.12.1 Introducing a gas&uscore;interaction Unit into Workshop 1
1.12.2 Naphtha Upgrading Using Adsorption
Journal Articles Specifically Utilizing Aspen Adsorption
Chapter 2 Simulation of SMB Chromatographic Processes
2.1 Introduction to Chromatography
2.1.1 Mathematical Differences from Gas Adsorption
2.1.1.1 The Trace Liquid Assumption
2.1.1.2 Concentration Versus Partial Pressure
2.1.2 Thermodynamic Differences from Gas Adsorption
2.1.2.2 Physical Property Models
2.2 Introduction to SMB Chromatography
2.3 SMB Implementation Details
2.3.1 Common Process Configurations
2.3.4 Pressure Drop Limitations
2.3.5 Introduction to Operational Modes
2.4 SMB Workshop: Simulate a Four-Zone SMB in Aspen Chromatography for the Separation of Tröger's Base Enantiomers
2.4.1 Creating a Flowsheet in Aspen Chromatography
2.4.2 Adding Components to an Aspen Chromatography Simulation
2.4.3 The Chrom&uscore;CCC&uscore;separator2 Block
2.5 Tandem SMB Workshop: Simulate a Separation with Dual SMB Columns
2.6.1 Run Workshop 2.4 as a Steady‐State Simulation
2.6.2 Simulation of an Industrial‐Scale Xylene Separation Using Literature Data
2.6.3 Simulate a Five‐Zone SMB System for Separating Phenylalanine, Tryptophan, and Methionine
Journal Articles Specifically Utilizing Aspen Chromatography
Chapter 3 Shortcut Design of SMB Systems
3.1.2 Differential Equations
3.1.3 The Method of Characteristics
3.2.3 Constraints on the System
3.3 Triangle Theory Workshop: Design of a System for the Separation of Amino Acids
3.4 Exercise 1: Calculating Transitions in a Fixed Bed Using Mathematica
3.4.1 Differential Equations – Analysis
3.4.2 Constructing the Solution from Eigenvectors and Eigenvalues
3.4.3 Use the Steady‐State Information to Constrain Operating Conditions
3.4.4 Calculate the Curves Defined by the Eigenvectors
3.4.5 Calculate the Eigenvalues along the Transition
3.4.6 Calculate the Concentrations in Time and Space
3.4.7 Account for Shock Waves
3.5 Exercise 2: Constructing the Constraints on the TMB System in Mathematica
3.6.1 Standing Wave Design in a Nonlinear Ideal System
3.6.2 Standing Wave Design in a System with Nonlinear Isotherm and Significant Mass Transfer Effects
3.7 Standing Wave Design Workshop: Calculating the Operating Conditions for an Ideal and a Nonideal System
3.9.1 Use the Triangle Theory Tool and the Standing Wave Design Tool to Create an Aspen Simulation of the Separation of 1‐phenol‐1‐propanol on Tribenzoate
Chapter 4 Operational Modes of SMB Processes
4.2 Selection of Operational Modes
4.3.1 Design Heuristics and Examples
4.3.2 Workshop 1: Apply Varicol to the 4‐Zone SMB Model
4.4.1 Design Heuristics and Examples
4.4.2 Workshop 2: Apply PowerFeed to the Four‐Zone SMB Model
4.5.1 Design Heuristics and Examples
4.5.2 Workshop 3: Apply ModiCon to the 4‐Zone SMB Model
4.6.1 Workshop 4: Extend Previously Created Flowsheets
4.7.1 Introduction to Parallel Two Zones
4.7.2 Specification Analysis
4.7.3 Importing Flowsheets
4.9.1 Simulation of a Five‐Zone SMB Unit Using the ModiCon Operational Mode
4.9.2 Compare Parallel Two‐Zone Results with SMB Results
Chapter 5 Parameter Estimation, Regression, and Sensitivity of Adsorptive and Chromatographic Processes
5.1 Empirical Correlations for Physical Properties
5.1.1 Axial Dispersion Coefficient
5.1.2 Mass Transfer Coefficient
5.2 Parameter Workshop: Regressing against Steady‐State Experiments
5.2.1 Introduction to "Experiments" In Aspen Software
5.2.3 Parameter Regression in Excel
5.2.4 Parameter Regression in Aspen Chromatography
5.2.4.1 Defining an Estimation Flowsheet
5.2.4.2 Entering Experimental Data
5.2.4.3 Estimation Settings
5.2.4.4 Running an Estimation
5.2.5 Parameter Regression In Mathematica
5.2.5.1 Defining the Functions
5.2.5.2 Entering the Data
5.3 Parameter Workshop: Regressing Against Dynamic Experiments
5.3.1 Problem Description
5.3.2 Dynamic Estimation Settings
5.3.3 Performance Concerns
5.4 Xylene Parameter Regression
5.6.1 Perform Dynamic Parameter Estimation in Aspen Adsorption
5.6.2 Sensitivity Analysis Using Scripts in Aspen Adsorption
Literature Cited in the Text