Conjugated Polymers for Biological and Biomedical Applications

Author: Bin Liu  

Publisher: John Wiley & Sons Inc‎

Publication year: 2018

E-ISBN: 9783527342785

P-ISBN(Paperback): 9783527342730

Subject: O631 polymer physics and physical chemistry of polymers

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.2.2.2 Pyridinium CPEs

1.2.2.3 Phosphonium CPEs

1.2.3 Zwitterionic CPEs

1.3 Neutral WSCPs

1.4 Fabrication of CPNPs

1.4.1 Reprecipitation

1.4.2 Miniemulsion

1.4.3 Nanoprecipitation

1.5 Conclusion

References

Chapter 2 Direct Synthesis of Conjugated Polymer Nanoparticles

2.1 Introduction

2.2 Generation of CPNs

2.2.1 Postpolymerization Techniques

2.2.1.1 Nanoprecipitation

2.2.1.2 Miniemulsification

2.2.1.3 Microfluidics

2.2.1.4 Self-Assembly

2.2.2 Direct Polymerization in Heterogeneous Systems

2.2.2.1 Emulsion Polymerization

2.2.2.2 Polymerization in Miniemulsion

2.2.2.3 Polymerization in Microemulsion

2.2.2.4 Dispersion Polymerization

2.3 Conclusion

References

Chapter 3 Conjugated Polymer Nanoparticles and Semiconducting Polymer Dots for Molecular Sensing and In Vivo and Cellular Imaging

3.1 Introduction

3.2 Preparation, Characterization, and Functionalization

3.2.1 Preparation

3.2.2 Characterization

3.2.3 Functionalization

3.3 Molecular Sensing

3.3.1 Metal-Ion Sensing

3.3.2 Oxygen and Reactive Oxygen Species Detection

3.3.3 pH and Temperature Monitoring

3.3.4 Sensing of Other Molecules

3.4 Cellular Imaging

3.4.1 Fluorescence Imaging

3.4.1.1 In Vitro Imaging

3.4.1.2 In Vivo Imaging

3.4.2 Photoacoustic Imaging

3.4.3 Multimodality Imaging

3.5 Conclusion

Acknowledgment

References

Chapter 4 Conjugated Polymers for In Vivo Fluorescence Imaging

4.1 Introduction

4.2 In Vivo Fluorescence Imaging of Tumors

4.3 Stimuli-Responsive Fluorescence Imaging

4.4 In Vivo Fluorescence Cell Tracking

4.5 Two-Photon Excited Brain Vascular Imaging

4.6 Dual-Modality Imaging of Tumors In Vivo

4.7 Other In Vivo Fluorescence Imaging Applications

4.8 Conclusions and Perspectives

References

Chapter 5 π-Conjugated/Semiconducting Polymer Nanoparticles for Photoacoustic Imaging

5.1 Introduction

5.2 Mechanism of PA Imaging

5.3 SPNs for PA Imaging

5.3.1 Preparation of SPNs

5.3.2 PA Imaging of Brain Vasculature

5.3.3 PA Imaging of Tumor

5.3.4 PA Imaging of Lymph Nodes

5.3.5 PA Imaging of ROS

5.3.6 Multimodal Imaging

5.4 Summary and Outlook

References

Chapter 6 Conjugated Polymers for Two-Photon Live Cell Imaging

6.1 Introduction

6.2 Conjugated Polymers and CPNs as One-Photon Excitation Imaging Contrast Agents

6.3 Conjugated Polymers as 2PEM Contrast Agents

6.4 Conjugated-Polymer-Based Nanoparticles (CPNs) as 2PEM Contrast Agents

6.4.1 CPNs Prepared from Hydrophobic Conjugated Polymers

6.4.2 CPNs Prepared from Conjugated Polyelectrolytes (CPEs)

6.4.3 CPNs Prepared by Hybrid Materials

6.5 Conclusions and Outlook

References

Chapter 7 Water-Soluble Conjugated Polymers for Sensing and Imaging Applications

7.1 Introduction

7.2 Conjugated Polymers for Sensing

7.2.1 Sensing Based on FRET

7.2.1.1 One‐Step FRET

7.2.1.2 Two‐Step FRET

7.2.2 Sensing Based on Superquenching of CPs

7.2.2.1 Analytes‐Induced Quenching

7.2.2.2 Gold Nanoparticles‐Induced Superquenching

7.2.2.3 Graphene Oxide‐Induced Superquenching

7.2.3 Sensing Based on Conformation Conversion

7.2.4 Sensing Based on Aggregation of Conjugated Polymers

7.3 Imaging of Conjugated Polymers

7.3.1 Single-Modal Imaging

7.3.1.1 Fluorescence Imaging

7.3.1.2 Far‐Red and NIR Imaging

7.3.1.3 Two‐Photon Imaging

7.3.1.4 Multicolor Imaging

7.3.2 MultiModal Imaging

7.3.2.1 MRI/Fluorescence Imaging

7.3.2.2 Fluorescence/Dark‐Field Imaging

7.3.2.3 MRI/Photoacoustic Imaging

7.4 Challenges and Outlook

References

Chapter 8 Conjugated Polymers for Gene Delivery

8.1 Introduction

8.2 Fundamental Properties of Conjugated Polymers

8.3 Intracellular Targeting, Cytotoxicity, and Biodegradability of Conjugated Polymers

8.4 Plasmid DNA (pDNA) Delivery

8.5 Small Interfering RNA (siRNA) Delivery

8.6 Conclusions and Outlook

References

Chapter 9 Conductive Polymer-Based Functional Structures for Neural Therapeutic Applications

9.1 Introduction

9.2 Conductive Polymer-Based Functional Structures

9.2.1 Conductive Polymers

9.2.2 Conductive Polymer-Based Hydrogels

9.2.3 Conductive Polymer-Based Nanofibers

9.3 Synthesis and Functionalization of Conductive Polymer-Based Functional Structures

9.3.1 Synthesis and Doping of Conductive Polymers

9.3.2 Fabrication of Electroconductive Hydrogels

9.3.3 Electrospinning of Conductive Polymer-Based Nanofibers

9.3.4 Functionalization and Modification of Conductive Polymer-Based Functional Structures

9.4 Applications of Conductive Polymer-Based Functional Structures for Neural Therapies

9.4.1 Electrostimulated Drug Delivery

9.4.2 Neural Cell and Tissue Scaffolds for Neural Regeneration

9.4.3 Implantable Biosensors and Neural Prostheses

9.5 Summary and Outlook

References

Chapter 10 Conjugated Polymers for Photodynamic Therapy

10.1 Introduction

10.1.1 Photodynamic Therapy – Concept and History

10.1.2 Outline of the PDT Process

10.1.3 Role of Conjugated Polymers in PDT

10.1.4 Photochemistry Behind the PDT Process

10.1.5 Design Aspects of Effective PDT

10.2 Conjugated Polymers as Photosensitizers

10.2.1 Far-Red/Near-IR Emitting CP as Photosensitizers

10.2.2 CP as Energy Transfer Systems to Photosensitizing Dyes

10.2.3 Hybrid Photosensitizers based on CP

10.3 Applications of CP-Based Photodynamic Therapy

10.3.1 Antimicroorganism Activity

10.3.2 Antitumor Therapy

10.4 Conclusions and Future Perspectives

References

Chapter 11 Conjugated Polymers for Near-Infrared Photothermal Therapy of Cancer

11.1 Introduction

11.2 Conjugated Polymers for Cancer Photothermal Therapy

11.2.1 Polyaniline (PANI) Nanoparticles

11.2.2 Polypyrrole (PPy) Nanoparticles

11.2.3 PEDOT:PSS–PEG Nanoparticles

11.2.4 Donor–Acceptor (D–A) Conjugated Polymers

11.3 Imaging Guided Photothermal Therapy

11.4 Conjugated Polymers for Combination Cancer Treatment

11.4.1 Combined Photodynamic and Photothermal Therapy

11.4.2 Combined Photothermal Chemotherapy

11.5 Outlook and Perspectives

References

Chapter 12 Conjugated Polymers for Disease Diagnosis and Theranostics Medicine

12.1 Introduction

12.2 Disease Diagnostics via Conjugated Polymers

12.2.1 Detection of Pathogens (E. coli, C. albicans, B. subtilis)

12.2.2 Detection of Cancer Biomarkers (DNA Methylation, miRNAs, Hyaluronidase, Spermine)

12.2.2.1 DNA Methylation

12.2.2.2 MicroRNAs (miRNA) Detection

12.2.2.3 Hyaluronidase (HAase) Detection

12.2.2.4 Spermine Detection

12.2.3 Detection of Other Important Biomarkers (Acid Phosphatase, Bilirubin)

12.2.3.1 Acid Phosphatase (ACP) Detection

12.2.3.2 Bilirubin Detection

12.3 Conjugated Polymers for Cancer Theranostics

12.3.1 Photodynamic Therapy (PDT)

12.3.2 Photothermal Therapy (PTT)

12.4 Studying Neurodegenerative Disorders

12.4.1 Diagnostics via Conjugated Polymers

12.4.2 Therapeutic Strategies to Prevent Neurodegenerative Disorders

References

Chapter 13 Polymer-Grafted Conjugated Polymers as Functional Biointerfaces

13.1 Introduction

13.2 Methods of Functionalizing CPs

13.2.1 Biodopants

13.2.2 Biomolecule Attachment

13.2.3 Copolymers and Polymer Blends

13.3 CP-Based Polymer Brushes as Biointerfaces: Rationale and Applications

13.3.1 Antifouling

13.3.2 Biosensing

13.3.3 Tissue Engineering

13.3.4 Stimuli-Responsive Materials

13.3.5 Emerging Bioelectronics Materials Based on Grafted CPs

13.4 Synthesis of CP-Based Graft Copolymer Brushes

13.4.1 Grafted CPs: Synthesis by “Grafting Through” Approach

13.4.2 Grafted CPs: Synthesis by “Grafting To” Approach

13.4.3 Grafted CPs: Synthesis by “Grafting From” Approach

13.5 Conclusions and Outlook

References

Index

EULA

The users who browse this book also browse