Microbes for Climate Resilient Agriculture

Chapter

1.6 PLANT RESPONSE TO STRESSES RELATED TO CLIMATE CHANGE AND MARGINAL LANDS

1.7 SUSTAINING BIOFUEL CROPS UNDER STRESSFUL ENVIRONMENTS

1.8 THE PHYTOMICROBIOME AND CLIMATE CHANGE CONDITIONS

1.9 THE PHYTOMICROBIOME AND ABIOTIC PLANT STRESS

1.10 MECHANISMS OF STRESS TOLERANCE IN THE PHYTOMICROBIOME

1.11 PHYTOMICROBIOME ENGINEERING

1.12 THE PHYTOMICROBIOME IN BIOFUEL PLANTS

1.13 ROLE OF THE PHYTOMICROBIOME IN PHYTOREMEDIATION BY BIOFUEL PLANTS

REFERENCES

CHAPTER 2 THE IMPACT OF AGRICULTURE ON SOIL MICROBIAL COMMUNITY COMPOSITION AND DIVERSITY IN SOUTHEAST ASIA

2.1 INTRODUCTION

2.2 THE EXTENT OF SOIL MICROBIAL DIVERSITY AND THEIR STATUS IN TROPICAL SOILS

2.3 THE COMPOSITION AND FUNCTION OF MICROBIAL COMMUNITIES IN TROPICAL SOILS OF SOUTHEAST ASIA

2.3.1 Unique Soil Microbial Communities of Southeast Asia and their Potential Drivers

2.4 THE IMPACT OF LAND USE CHANGE ON SOIL MICROBIAL COMMUNITY STRUCTURE AND DIVERSITY

2.5 THE IMPACT OF LAND USE CHANGE ON SOIL FUNCTIONAL GENE DIVERSITY

2.6 CONCLUSIONS

REFERENCES

CHAPTER 3 CLIMATE CHANGE IMPACT ON PLANT DISEASES: OPINION, TRENDS AND MITIGATION STRATEGIES

3.1 INTRODUCTION

3.2 CLIMATE CHANGE AND AGRICULTURE

3.3 INTERACTIONS AMONG GLOBAL CHANGE FACTORS

3.4 PATHOGEN–HOST PLANT RELATIONSHIP UNDER CHANGED SCENARIO

3.5 EFFECT OF CLIMATE CHANGE ON PLANT DISEASES

3.5.1 Temperature

3.5.2 Drought

3.5.3 Rainfall

3.5.4 CO2 Concentration

3.6 ADAPTATION AND MITIGATION STRATEGIES FOR CLIMATE CHANGE

3.6.1 Adaptation Strategies

3.6.2 Mitigation Strategies

3.7 CONCLUSION AND FUTURE DIRECTIONS

REFERENCES

CHAPTER 4 MICROALGAE: POTENTIAL AGENTS FOR CARBON DIOXIDE MITIGATION

4.1 INTRODUCTION

4.2 CARBON CAPTURE AND STORAGE

4.3 CARBON CAPTURE BY PHOTOSYNTHESIS

4.4 CO2 MITIGATION BY MICROALGAL CULTURE

4.4.1 The Open Pond System

4.4.2 The Closed Photobioreactor System

4.4.3 The Environmentally Controlled System

4.5 ADVANTAGES

4.5.1 Integration of Microalgal Culture in Waste Water Treatment

4.5.2 Ability of Microalgae to Tolerate the Greenhouse Gases

4.6 CARBON CONCENTRATING MECHANISM OF MICROALGAE

4.7 CO2 SEQUESTRATION BY MICROALGAE

4.8 COST EFFECTIVENESS

4.8.1 Biofertilizer

4.8.2 Biofuel

4.8.3 Other Products

4.9 CONCLUSION

REFERENCES

CHAPTER 5 PHOTOSYNTHETIC MICROORGANISMS AND BIOENERGY PROSPECTS: CHALLENGES AND POTENTIAL

5.1 INTRODUCTION

5.2 PHOTOSYNTHETIC MICROBES

5.3 Anoxigenic Photosynthetic Microbes

5.3.1 Green Photosynthetic Bacteria

5.3.2 Purple Bacteria

5.3.3 Heliobacteria

5.3.4 Prospects of Anoxigenic Photosynthetic Microbes in Bioenergy Production

5.4 OXYGENIC PHOTOSYNTHETIC MICROBES

5.4.1 Cyanobacteria

5.4.2 Microalgae

5.5 BIOMASS PRODUCTION AND CHALLENGES

5.6 SOME IMPORTANT ISSUES ASSOCIATED WITH BIOFUEL PRODUCTION

5.6.1 Use of Water

5.6.2 Nutrients and Competition with Crops

5.6.3 Minimizing Algae Death from Biotic and Abiotic Factors

5.6.4 Competition with Petroleum in Terms of Price

5.7 CONCLUSIONS

ACKNOWLEDGEMENTS

REFERENCES

CHAPTER 6 AMELIORATION OF ABIOTIC STRESSES IN PLANTS THROUGH MULTI-FACETED BENEFICIAL MICROORGANISMS

6.1 INTRODUCTION

6.2 TEMPERATURE STRESS ALLEVIATION

6.2.1 Alleviation by Bacteria

6.2.2 Alleviation by Fungi

6.3 WATER AND SALINITY STRESS ALLEVIATION

6.3.1 Alleviation by Bacteria

6.3.2 Alleviation by Fungi

6.4 ALLEVIATION OF HEAVY METAL TOXICITY

6.5 CONCLUSIONS

REFERENCES

CHAPTER 7 ROLE OF METHYLOTROPHIC BACTERIA IN CLIMATE CHANGE MITIGATION

7.1 INTRODUCTION

7.2 METHYLOTROPHIC BACTERIA AND THEIR ROLE IN AGRICULTURE

7.3 VOLATILE ORGANIC CARBON MITIGATION AND METHYLOTROPHS

7.4 CARBON CYCLING AND CLIMATE CHANGE

7.5 METHYLOTROPHS MITIGATING METHANE

7.6 METHYLOTROPHS MITIGATING METHANE IN PADDY FIELDS

7.7 CONCLUSIONS

ACKNOWLEDGEMENTS

REFERENCES

CHAPTER 8 CONSERVATION AGRICULTURE FOR CLIMATE CHANGE RESILIENCE: A MICROBIOLOGICAL PERSPECTIVE

8.1 INTRODUCTION

8.2 THE EFFECT OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTION

8.3 CONCEPTS AND PRINCIPLES OF CONSERVATION AGRICULTURE

8.4 THE ECOLOGICAL ROLE OF MICROBIAL BIODIVERSITY IN AGRO-ECOSYSTEMS

8.5 ROLE OF MICROBIAL POPULATION IN C‐SEQUESTRATION, N, P CYCLE

8.6 RESTORING DIVERSITY IN LARGE-SCALE MONOCULTURES

8.7 ENHANCING CROPS VIS‐A‐VIS MICROBIAL BIODIVERSITY TO REDUCE VULNERABILITY

8.8 CONCLUSIONS

REFERENCES

CHAPTER 9 ARCHAEAL COMMUNITY STRUCTURE: RESILIENCE TO CLIMATE CHANGE

9.1 INTRODUCTION

9.2 POSSIBLE ROLE OF ARCHAEA IN AGRICULTURAL SUSTAINABILITY

9.3 ECOLOGY AND PHYLOGENY OF DOMAIN ARCHAEA

9.4 ARCHAEAL CONTRIBUTION TO GLOBAL CLIMATE CHANGE

9.4.1 Archaeal Response to Increased Temperatures

9.4.2 Archaeal Response to Biogeochemical Cycles

9.5 ARCHAEAL MECHANISMS OF ADAPTATION WITH RESPECT TO ABIOTIC CHANGES

9.6 CONCLUSIONS

REFERENCES

CHAPTER 10 MYCORRHIZA – HELPING PLANTS TO NAVIGATE ENVIRONMENTAL STRESSES

10.1 INTRODUCTION

10.2 ARBUSCULAR MYCORRHIZAE

10.3 ELEVATED CO2 LEVELS

10.4 HIGH TEMPERATURE

10.5 SALINITY

10.6 CONCLUSIONS

REFERENCES

CHAPTER 11 ENDOPHYTIC MICROORGANISMS: FUTURE TOOLS FOR CLIMATE RESILIENT AGRICULTURE

11.1 INTRODUCTION

11.1.1 Climate Change – Impact and Need for Adaptation

11.2 ENDOPHYTES AND CLIMATE RESILIENCE

11.2.1 High Temperature Stress

11.2.2 Low Temperature Stress

11.2.3 Moisture-Deficit Stress

11.2.4 Salinity Stress

11.2.5 Waterlogging Stress

11.3 ENDOPHYTES AND BIOTIC STRESS

11.3.1 Plant Diseases

11.3.2 Nematode Infestation

11.3.3 Insect Pests

11.4 CONCLUSIONS

REFERENCES

CHAPTER 12 BACILLUS THURINGIENSIS: GENETIC ENGINEERING FOR INSECT PEST MANAGEMENT

12.1 INTRODUCTION

12.2 BIOLOGY OF BACILLUS THURINGIENSIS

12.2.1 Natural Occurrence of Bacillus thuringiensis

12.2.2 Classification of Bt Toxins

12.2.3 Mode of Action

12.3 BIOTECHNOLOGICAL APPROACHES OF MICROBIAL GENES FOR INSECT PEST MANAGEMENT

12.3.1 Microbial Genes and Gene Pyramiding

12.3.2 Alternative Insecticidal Genes

12.3.3 Gene Pyramiding

12.4 METHODS FOR DEVELOPMENT OF TRANSGENIC CROPS

12.4.1 Direct Gene Transfer

12.4.2 Indirect Gene Transfer

12.5 FIELD EVALUATION AND COMMERCIALLY AVAILABLE INSECTICIDAL CROPS

12.5.1 Environmental Safety

12.5.2 Ecological Balance and Food Safety

12.6 INSECTICIDE RESISTANCE

12.7 CONCLUSIONS

REFERENCES

CHAPTER 13 MICROBIAL NANOTECHNOLOGY FOR CLIMATE RESILIENT AGRICULTURE

13.1 INTRODUCTION

13.2 MICROBE MEDIATED FABRICATION OF NANOPARTICLES

13.2.1 Bacteria

13.2.2 Fungi

13.2.3 Algae

13.2.4 Viruses

13.2.5 Actinomycetes

13.3 NANOMATERIALS FOR BIOTIC AND ABIOTIC STRESS MANAGEMENT

13.3.1 Biotic Stress Management

13.3.2 Abiotic Stress Management

13.4 NANO‐FERTILIZERS FOR BALANCED CROP NUTRITION

13.5 CONCLUSION AND FUTURE DIRECTIONS

REFERENCES

INDEX

SUPPLEMENTAL IMAGES

EULA

The users who browse this book also browse


No browse record.