Bimetallic Nanostructures :Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

1.4.1 Elemental Composition and Distribution-Property Correlation

1.4.2 Size–Property Correlation

1.4.3 Geometric Structure-Property Correlation

1.4.4 Phase Structure-Property Correlation

1.5 Controlled Synthesis

1.6 Outline of This Book

1.7 References

Chapter 2 Theoretical Models for Bimetallic Surfaces and Nanoalloys

2.1 Introduction

2.2 Theoretical Approaches to Inter-Atomic Interactions

2.2.1 First-Principles Approaches

2.2.2 Empirical Inter-Atomic Potentials for Metallic Systems

2.2.3 Lattice Models

2.3 Global Optimization Methods

2.3.1 Basin-Hopping Algorithm

2.3.2 Genetic Algorithm

2.4 Statistical Approaches

2.4.1 Molecular Dynamics Simulation

2.4.2 Monte Carlo Simulation

2.4.3 Superposition Approach to Thermodynamic Properties of Nanoparticles

2.5 Electronic Properties and Catalytic Activity of Bimetallic Systems

2.5.1 The d-Band Model for Chemical Adsorption at Transition Metal Surfaces

2.5.2 Tuning the Reactivity of Bimetallic Surfaces: Strain, Ligand, and Ensemble Effects

2.5.2.1 Strain Effect

2.5.2.2 Ligand Effect

2.5.2.3 Ensemble Effect

2.6 Computational Design of Bimetallic Heterogeneous Catalysts

2.6.1 Transition State and Adsorption Energy‐Scaling Relations

2.6.2 The Sabatier Principle and the Volcano Plot

2.6.3 High-Throughput Screening of Bimetallic Catalysts

2.7 Concluding Remarks

2.8 Acknowledgments

2.9 References

Chapter 3 In situ Characterization Techniques of Bimetallics

3.1 Introduction

3.2 Electron Microscopy

3.3 Infrared Spectroscopy

3.4 X-Ray Absorption Fine Structure

3.5 Conclusions and Outlook

3.6 References

Part II Synthesis, Characterization, and Properties of Shape-Controlled Bimetallic Nanostructures

Chapter 4 Bimetallic Nanopolyhedrons and Nanospheres

4.1 Introduction

4.2 Architecture of Bimetallic Nanospheres and Nanopolyhedrons

4.2.1 Solid Solution

4.2.2 Intermetallic Compounds

4.2.3 Core–Shell Nanocrystals

4.3 General Principles of Shape Evolution

4.3.1 Equilibrium Shape: Wulff Polyhedron

4.3.2 Nucleation Mechanism of Metal Nanocrystals

4.3.3 Growth of Metal Nanocrystals

4.4 Key Factors for Shape Evolution in Colloidal Synthesis

4.4.1 Redox Potentials

4.4.2 Reduction Rate

4.4.3 Lattice Mismatch

4.4.4 Facet-Specific Capping Agents

4.5 Synthetic Approaches to Bimetallic Nanospheres and Nanopolyhedrons

4.5.1 Continuous Growth

4.5.1.1 Coreduction

4.5.1.2 Thermal Decomposition

4.5.1.3 Combination of Thermal Decomposition and Reduction

4.5.2 Seed-Mediated Growth

4.5.3 Combination of Underpotential Deposition and Galvanic Replacement Reaction

4.6 Catalytic Properties of Bimetallic Nanospheres and Nanopolyhedrons

4.6.1 Effects of Adsorption Energy and Facet Type in Bimetallics

4.6.2 Shape-Dependent Catalytic Reactions

4.6.2.1 Pt–Ni Nanocrystals for Oxygen Reduction Reaction

4.6.2.2 Pt–Pd Nanocrystals for Methanol Electrooxidation

4.6.2.3 Au–Pd Nanocrystals for Suzuki Coupling Reaction

4.7 Conclusions and Outlook

4.8 References

Chapter 5 Bimetallic Convex and Concave Nanostructures

5.1 Introduction

5.2 Synthetic Methods

5.2.1 Synthesis of Bimetallic Concave Structures

5.2.1.1 Galvanic Replacement

5.2.1.2 Coreduction with a Control of Capping Ligand(s)

5.2.1.3 Selective Etching (or Site-Specific Etching)

5.2.1.4 Seed-Mediated Growth

5.2.2 Synthesis of Bimetallic Convex Structure

5.3 Structural Characterization

5.3.1 Crystal Facets

5.3.2 Case Studies

5.3.2.1 {hk0} Facets

5.3.2.2 {hkl} Facets

5.4 Selected Properties

5.4.1 SERS Characteristics

5.4.1.1 Case of Ag Convex NCs

5.4.1.2 Case of Ag Concave NCs

5.4.1.3 Cases of Bimetallic Noble Metals

5.4.2 Electrocatalytic Performance

5.4.2.1 Cases of Pt–Cu Nanostructures

5.4.2.2 Cases of Pt‐Pd Concave NCs and Others

5.4.3 Chemically Catalytic Behaviors

5.4.3.1 Cases of Hydrogenation

5.4.3.2 Cases of 4‐Nitrophenol Reduction

5.4.3.3 Cases of Other Reactions

5.5 Conclusions

5.6 References

Chapter 6 Bimetallic Nanoframes and Nanoporous Structures

6.1 Introduction

6.2 Principles for the Formation of Bimetallic Nanoframes and Nanoporous Structures

6.2.1 Top-Down Approach

6.2.2 Bottom-Up Approach

6.3 Synthetic Methods

6.3.1 Template-Assisted Method

6.3.1.1 Hard Template

6.3.1.2 Soft Template

6.3.1.3 Sacrificial Template

6.3.2 Oxidative Etching

6.3.3 Galvanic Replacement Reaction

6.3.4 Kirkendall Effect

6.3.5 Electrochemical Dealloying

6.3.6 Assembly

6.3.7 Other Methods of Interest

6.4 Summary and Outlook

6.5 References

Chapter 7 Bimetallic Dendritic Nanostructures

7.1 Introduction

7.2 Synthesis of Bimetallic Dendritic Nanostructures

7.2.1 Coreduction

7.2.2 Galvanic Replacement Reaction

7.2.3 Seed-Mediated Growth

7.2.4 Other Methods

7.3 Properties and Applications of Bimetallic Dendritic Nanostructures

7.3.1 Plasmonics

7.3.2 Catalysis

7.4 Conclusion and Outlook

7.5 References

Chapter 8 Bimetallic Ultrathin Nanowires

8.1 Introduction

8.2 Chemical Synthesis of Ultrathin Bimetallic Nanowires

8.2.1 Synthetic Fundamentals

8.2.2 Anisotropic Growth into Ultrathin Nanowires

8.3 Chemical Synthesis of Ultrathin Bimetallic Nanowires

8.3.1 Bimetallic Alloy Nanowires

8.3.2 Bimetallic Core–Shell Nanowires

8.3.3 Bimetallic Nanowires Formed by Directional Aggregation of Nanoparticles

8.4 Concluding Remarks

8.5 References

Chapter 9 Bimetallic Nanoplates and Nanosheets

9.1 Introduction

9.2 Synthesis of Bimetallic Nanoplates and Nanosheets

9.2.1 Seeded Epitaxial Growth Process

9.2.2 Coreduction Process

9.2.3 Solvothermal Reaction

9.2.4 Galvanic Replacement Reaction

9.2.5 Electrodeposition Process

9.2.6 Other Processes

9.3 Properties and Applications of Bimetallic Nanoplates and Nanosheets

9.3.1 Magnetic Properties

9.3.2 Catalytic Applications

9.3.3 Optical and Biomedical Applications

9.4 Conclusions and Perspectives

9.5 References

Part III Applications of Shape-Controlled Bimetallic Nanostructures

Chapter 10 Electrocatalysis

10.1 Introduction

10.2 Effect of Bimetallic Nanostructures

10.2.1 Electronic Effect

10.2.2 Bifunctional Effect

10.2.3 Ensemble Effect

10.2.4 Morphology Effect

10.3 Characterization Techniques

10.3.1 Electron Microscopy

10.3.2 X-ray Diffraction Pattern (XRD)

10.3.3 X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)

10.3.4 Electrochemical Measurements

10.4 Electrocatalytic Reactions Using Bimetallic Nanostructures

10.4.1 Oxygen Reduction Reaction (ORR)

10.4.1.1 ORR Using Pt–M Alloy Structures

10.4.1.2 ORR Using Pt–M Intermetallic Structures

10.4.1.3 Model Surface

10.4.1.4 Shape-Controlled Pt3Ni Nanoparticles with (111) Facets

10.4.1.5 Durability of the Bimetallic Nanoparticle Catalysts

10.4.2 Fuel Oxidation

10.4.2.1 Hydrogen Oxidation

10.4.2.2 Methanol Oxidation

10.4.2.3 Formic Acid Oxidation

10.4.2.4 Oxidation of Other Small Organics

10.4.3 Oxygen Evolution Reaction

10.4.3.1 Alloy with Another Precious Metals

10.4.3.2 Alloy with 3d Metals

10.5 Perspective

10.6 Conclusion

10.7 Acknowledgments

10.8 References

Chapter 11 Heterogeneous Catalysis

11.1 Introduction

11.2 Oxidation

11.2.1 CO Oxidation

11.2.1.1 Monometallic NPs

11.2.1.2 Compositional and Structural Effect in Bimetallic NPs

11.2.2 Preferential CO Oxidation in H2‐Rich Feeds (PROX)

11.2.2.1 Spherical Core–Shell NPs

11.2.2.2 Hollow Cubic NPs

11.2.3 Selective Oxidation of Alcohols and Amines

11.3 Hydrogenation/Dehydrogenation

11.3.1 Selective Hydrogenation of Nitroarenes

11.3.1.1 Spherical and Random‐Shaped NPs

11.3.1.2 Dendrite NPs

11.3.1.3 Cubic/Octahedral NPs

11.3.1.4 Hollow NPs

11.3.2 Hydrogenation of Alkenes and Alkynes

11.3.2.1 The Alkene Hydrogenation on Pt NPs

11.3.2.2 Alkene Hydrogenation on Shaped Bimetallic NPs

11.3.2.3 Semi-Hydrogenation of Alkynes on Shaped Bimetallic NPs

11.3.3 Selective Hydrogenation of α,β‐Unsaturated Aldehydes

11.3.3.1 The Synergy of Bimetallic Combinations

11.3.3.2 Capping Agent Effect

11.4 H2 Evolution Reaction

11.5 Coupling Reactions

11.5.1 Spherical NPs

11.5.2 Polyhedral NPs

11.5.2.1 Promotion of Activity Arising from High Index Facets and Larger Surface Area

11.5.2.2 The Facet-Activity Relationship

11.6 Conclusion

11.7 Acknowledgments

11.8 References

Chapter 12 Plasmonics

12.1 Introduction to Plasmonics

12.2 Preparation of Gold Nanoparticles

12.3 Assembly of Gold Nanoparticles

12.3.1 Assembly of Gold Nanoparticles

12.3.2 Reversible Assembly of Gold Nanoparticles

12.3.3 Assembly of Gold Nanoparticles on Substrate

12.4 Plasmonics of Bimetallic Nanocrystals

12.4.1 Au–Ag Nanostructure

12.4.2 Au–Pd Nanostructure

12.4.3 Other Bimetallic Plasmonic Nanostructures

12.5 Application of Plasmonic Nanostructures

12.5.1 Bio-Imaging Application

12.5.2 Photothermal Application

12.5.3 Biodetection Based on SPR

12.6 Concluding Remarks

12.7 References

Chapter 13 Sensing

13.1 Plasmonic Sensors

13.1.1 Bimetallic SPR Sensors

13.1.2 Sensors Based on LSPR Peak Shift

13.1.2.1 LSPR Shift Induced by Binding of the Analytes with the Sensor

13.1.2.2 LSPR Sensors Based on Selective Etching of a Metallic Component from the Preformed Bimetallic Nanoparticles

13.1.2.3 LSPR Sensors Based on Enzyme‐Guided Metallic Crystal Growth

13.2 Bimetallic Sensors Based on Surface‐Enhanced Raman Spectroscopy

13.3 Electrochemical Sensors Based on Bimetallic Nanoparticles

13.3.1 Detection of Heavy Metal Ions

13.3.2 Detection of Uric Acid

13.3.3 Nonenzymatic Detection of Hydrogen Peroxide

13.3.4 Detection of Glucose

13.3.5 Electrochemical Immunosensors

13.3.6 Detection of other Electroactive Molecules

13.4 Sensors Based on the Enzyme‐Mimicking Properties of Bimetallic NPs

13.5 Sensors Based on Luminescent Bimetallic Nanoclusters

13.5.1 Detection of Heavy Metal Ions

13.5.2 Detection of Sulfide Anion

13.5.3 Detection of Other Small Molecules

13.6 Conclusions

13.7 Acknowledgments

13.8 References

Index

EULA

The users who browse this book also browse


No browse record.