Efficiency in Natural Product Total Synthesis

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chapter

4 The Challenges of the Efficiency in the Total Synthesis of Natural Products

5 The Renaissance of Natural Products as Drug Candidates

6 Recent Recognition of the Contribution of Natural Product-Based Drugs to Society

Acknowledgements

References

Chapter 1 Principles for Synthetic Efficiency and Expansion of the Field

1.1 Concepts for Efficiency in the Total Synthesis of Natural Products

1.1.1 Ideal Synthesis

1.1.2 Selectivity

1.1.3 Green Synthesis

1.1.4 Atom Economy

1.1.5 E Factors

1.1.6 Step Economy

1.1.7 Pot Economy and PASE (Pot, Atom, and Step Economy)

1.1.8 Redox Economy

1.1.9 Protecting-Group-Free Synthesis

1.1.10 Multicomponent Reactions and One-Pot Reactions

1.1.11 Scalability

1.1.12 Convergent Synthesis

1.2 Biomimetic Synthesis

1.2.1 Basic Logic of Biosynthesis

1.2.2 Tandem, Cascade, and Domino Reactions – One-Pot Reactions

1.2.3 Site and Stereoselective Reactions

1.2.4 The C─H Bond Functionalization Strategy

1.2.5 The Building-Block Strategy

1.2.6 The Collective Synthesis Strategy

1.2.7 The Oligomerization Tactic

1.3 The Expansion of the Field: Chemical Biology/Chemical Genetics

1.3.1 Diversity-Oriented Synthesis (DOS)

1.3.2 Function-Oriented Synthesis (FOS)

1.3.3 Biology-Oriented Synthesis (BIOS)

1.3.4 Lead-Oriented Synthesis (LOS)

1.4 Addressing the Threats that Humans May Face in the Near Future

1.4.1 A. G. Myers’ Endeavor

1.4.2 D. L. Boger’s Endeavor

Acknowledgements

References

Chapter 2 Selected Procedure-Economical Enantioselective Total Syntheses of Natural Products

2.1 One-Step/One-Pot Enantioselective Total Synthesis of Natural Products/Drugs

2.1.1 Robinson’s One-Step Synthesis of Tropinone

2.1.2 Hayashi’s One-Pot Synthesis of (+)-ABT-341

2.2 Two-Step/Two-Pot Enantioselective Total Synthesis of Natural Products

2.2.1 Hayashi’s Two-Pot Synthesis of (−)-Oseltamivir

2.2.2 Ma’s Two-Pot Synthesis of (−)-Oseltamivir

2.2.3 Li’s Two-Step Chemoenzymatic Total Synthesis of Aszonalenin

2.2.4 Ishikawa’s Two-Step Total Syntheses of (+)-WIN 64821 and (+)-Naseseazine B

2.3 Three-Step/Three-Pot Enantioselective Total Synthesis of Natural Products

2.3.1 Carreira’s Three-Step Asymmetric Total Syntheses of (+)-Aszonalenin and (−)-Brevicompanine B

2.3.2 Husson’s Three-Step Asymmetric Total Synthesis of (−)-Sibirine

2.3.3 MacMillan’s Three-Step Asymmetric Total Synthesis of (+)-Frondosin B

2.3.4 Hayashi’s Three-Pot Total Synthesis of (−)-PGE1 Methyl Ester

2.3.5 Porco’s Three-Pot Total Synthesis of (−)-Hyperibone K

2.4 Four-Step Enantioselective Total Synthesis of Natural Products

2.4.1 Lawrence’s Four-Step Total Synthesis of (−)-Angiopterlactone A

2.4.2 Maimone’s Four-Step Synthesis of (+)-Cardamom Peroxide

2.4.3 Xie, Lai, and Ma’s Four-Step Total Synthesis of (−)-Chimonanthine

2.4.4 Huang’s Four-Step Total Synthesis of (−)-Chaetominine

2.5 Five-Step/Pot Enantioselective Total Synthesis of Natural Products

2.5.1 Carreira’s Five-Step Total Syntheses of Δ9-Tetrahydrocannabinols

2.5.2 Studer’s Five-Step Total Syntheses of (+)-Machaeriols B and D

2.5.3 Cook’s Five-Pot Total Synthesis of (+)-Artemisinin (Qinghaosu)

2.5.4 Corey’s Five-Step Total Synthesis of Aflatoxin B2

2.6 Six-Step Enantioselective Total Synthesis of Natural Products

2.6.1 Comins’ Six-Step Total Synthesis of (S)-Camptothecin

2.6.2 Krische’s Six-Step Total Synthesis of (−)-Cyanolide A

2.7 Seven-Step Enantioselective Total Synthesis of Natural Products

2.7.1 Baran’s 7–10-Step Total Syntheses of Hapalindole-Type Natural Products

2.7.2 Aggarwal’s Seven-Step Total Synthesis of (+)-PGF2α

2.7.3 Echavarren’s Seven-step Total Syntheses of Aromadendrane Sesquiterpenes

2.7.4 Zhu’s Seven-Step Total Synthesis of Peganumine A

2.7.5 Rychnovsky’s Seven-Step Synthesis of Lycopodium Alkaloid (+)-Fastigiatine

2.8 Eight-Step Enantioselective Total Synthesis of Natural Products

2.8.1 Overman’s Eight-Step Synthesis of (+)-Trans-Clerodane Iterpenoid

2.8.2 Chain’s Eight-Step Synthesis of (−)-Englerin A

2.8.3 Shenvi’s Eight-Step Total Synthesis of (−)-Jiadifenolide

2.8.4 Maimone’s Eight-Step Total Synthesis of (+)-Chatancin

2.8.5 Wipf’s Eight-Step Total Synthesis of (−)-Cycloclavine

2.8.6 Shenvi’s Eight-Step Total Synthesis of (−)-Neothiobinupharidine

2.9 Nine-Step Enantioselective Total Synthesis of Natural Products

2.9.1 Stoltz’s Nine-Step Total Synthesis of (−)-Cyanthiwigin F

2.9.2 Maimone’s Nine-Step Total Synthesis of (–)-6‐Epi-Ophiobolin N

2.9.3 MacMillan’s Nine-Step Total Synthesis of (−)-Vincorine

2.9.4 Ramharter’s Nine-Step Total Synthesis of (+)-Lycoflexine

2.9.5 Gao’s and Theodorakis’ Nine-Step Total Syntheses of (+)-Fusarisetin A

2.10 Ten/Eleven-Step Enantioselective Total Syntheses of Natural Products

2.10.1 Lin’s 10-Step Total Synthesis of (−)-Huperzine A

2.10.2 Trauner’s 10-Step Total Synthesis of (+)-Loline

2.10.3 Zhai’s 10-Step Total Synthesis of (+)-Absinthin

2.10.4 Baran’s 11-Step Total Synthesis of (−)-Maoecrystal V

2.11 Fourteen/Fifteen-Step Enantioselective Total Synthesis of Natural Products

2.11.1 Baran’s 14-Step Total Synthesis of (−)-Ingenol

2.11.2 Reisman’s 15-Step Total Synthesis of (+)-Ryanodol

2.11.3 Johnson’s 15-Step Total Synthesis of (+)-Pactamycin

2.12 Other Procedure-Economical Enantioselective Total Syntheses of Natural Products

2.13 Conclusion

Acknowledgements

References

Chapter 3 Diels–Alder Cascades in Natural Product Total Synthesis

3.1 Introduction

3.2 Cascades Initiated by Coupling of a Pre-Formed Diene and Dienophile

3.3 Simple Transformations to Diene/Dienophiles Followed by the Diels–Alder Cascade

3.4 Rearrangement-Initiated Diels–Alder Cascades

3.5 Cyclization-Initiated Diels–Alder Cascades

3.6 Diels–Alder Initiated Cascades

3.7 Concluding Remarks

Acknowledgements

References

Chapter 4 Organometallics-Based Catalytic (Asymmetric) Synthesis of Natural Products

4.1 Introduction

4.2 Au-Catalyzed Reactions in Total Synthesis

4.3 Ag-Catalyzed Reactions in Total Synthesis

4.4 Pt-Catalyzed Reactions in Total Synthesis

4.4.1 Pt-Catalyzed Enyne Cycloisomerization Reactions

4.5 Co-Catalyzed Pauson–Khand Reactions and Hetero-Pauson–Khand Reactions in Total Synthesis

4.6 Cu-Catalyzed Reactions in Total Synthesis

4.6.1 Asymmetric Conjugate Addition

4.6.2 Arene Cyclopropanation

4.7 Chromium-Catalyzed Reactions in Total Synthesis

4.8 Fe-Mediated Coupling Reactions in Total Synthesis

4.8.1 Reaction with Acid Chlorides

4.8.2 Reaction with Alkenyl Electophiles

4.8.3 Reaction with Aryl Halides

4.8.4 Reaction with Alkyl Halides

4.8.5 Related Iron-Catalyzed C–C Bond Formations

4.8.6 Iron-Catalyzed C–O, C–S, and C–N Cross-Coupling

4.9 Mn-Mediated Coupling Reactions in Total Synthesis

4.10 Ni-Catalyzed Reactions in Total Synthesis

4.10.1 Ni-Catalyzed Cycloadditions

4.10.2 Ni-Catalyzed Coupling Reactions

4.11 Pd-Catalyzed Cross-Coupling Reactions in Total Synthesis

4.11.1 Heck Reactions in Total Synthesis

4.11.2 Suzuki Reactions in Total Synthesis

4.11.3 Stille Reactions in Total Synthesis

4.11.4 Tsuji–Trost Reactions in Total Synthesis

4.11.5 Negishi Reactions in Total Synthesis

4.11.6 Pd-Catalyzed Domino Reactions in Total Synthesis

4.12 Rh-Catalyzed (C–H Functionalization by Metal Carbenoid and Nitrenoid Insertion) Reactions in Total Synthesis

4.13 Ru-Catalyzed RCM  and RCAM  in Total Synthesis

4.14 Conclusion

Acknowledgements

References

Chapter 5 C–H Activation-Based Strategy for Natural Product Synthesis

5.1 Introduction

5.2 Recently Completed Total Syntheses of Natural Products via a C–H Activation Approach

5.3 Conclusion

Acknowledgements

References

Chapter 6 Recent Applications of Kagan’s Reagent (SmI2) in Natural Product Synthesis

6.1 Background

6.1.1 The Reformatsky Reaction

6.1.2 Carbonyl/Alkene Reductive Reactions

6.1.3 Pinacol-Type Couplings

6.1.4 Fragmentation Reactions

6.2 SmI2-Mediated Reactions in Natural Product Synthesis

6.2.1 Synthesis of (+)-Acutiphycin

6.2.2 Synthesis of Brevetoxin B

6.2.3 Synthesis of (±)-Vigulariol

6.2.4 Synthesis of Diazonamide A

6.2.5 Synthesis of Epothilone A

6.2.6 Synthesis of Strychnine

6.2.7 Synthesis of the ABC Ring of Paclitaxel

6.2.8 Miscellaneous

6.3 Conclusion

Acknowledgements

References

Chapter 7 Asymmetric Organocatalysis in the Total Synthesis of Complex Natural Products

7.1 Background

7.2 Total Synthesis of Alkaloids

7.2.1 Synthesis of (−)-Flustramine B

7.2.2 Enantioselective Total Synthesis of (+)-Minfiensine

7.2.3 Concise Synthesis of (−)-Nakadomarin A

7.2.4 Collective Total Synthesis of Strychnine, Akuammicine, Aspidospermidine, Vincadifformine, Kopsinine, and Kopsanone

7.2.5 Asymmetric Synthesis of (−)-Lycoramine, (−)-Galanthamine, and (+)-Lunarine

7.2.6 Total Synthesis of the Galbulimima Alkaloid (−)-GB17

7.3 Total Synthesis of Terpenoids and Related Multicyclic Natural Products

7.3.1 Total Synthesis of (+)-Hirsutene

7.3.2 Total Synthesis of (−)-Brasoside and (−)-Littoralisone

7.3.3 Concise Synthesis of Ricciocarpin A

7.3.4 Total Synthesis and Absolute Stereochemistry of Seragakinone A

7.4 Total Synthesis of Macrolides (or Macrolactams)

7.4.1 Total Synthesis and Structural Revision of Callipeltoside C

7.4.2 Total Synthesis of (+)-Cytotrienin A

7.4.3 Total Synthesis of Diazonamide A

7.5 Total Synthesis of Peptide Natural Products

7.5.1 Total Synthesis of Chloptosin

7.6 Summary of the Key Reactions and Tactics

References

Chapter 8 Multicomponent Reactions in Natural Product Synthesis

8.1 Background

8.2 Multicomponent Reactions in Natural Product Synthesis

8.2.1 Synthesis of Martinelline by Powell and Batey

8.2.2 Synthesis of Eurystatin by Schmidt and Weinbrenner

8.2.3 Synthesis of Motuporin by Bauer and Armstrong

8.2.4 Synthesis of Thiomarinol H by Gao and Hall

8.2.5 Synthesis of Minquartynoic Acid by Gung and Coworkers

8.2.6 Synthesis of Spongistatin 2 by Smith and Coworkers

8.2.7 Synthesis of Vannusal A and B by Nicolaou and Coworkers

8.2.8 Synthesis of Calystegine B-4 by Pyne and Coworkers

8.2.9 Synthesis of Jerangolid D by Markó and Pospisil

8.2.10 Synthesis of (−)-Nakadomarin A by Young and Kerr

8.3 Conclusion

References

Chapter 9 Renewable Resource-Based Building Blocks/Chirons for the Total Synthesis of Natural Products

9.1 Introduction

9.1.1 The Chiron Approach Toward the Total Synthesis of Natural Products

9.1.2 General Survey of Natural Chirons

9.2 Total Synthesis of Alkaloids

9.2.1 Amino Acids as Starting Chirons

9.2.2 Carbohydrates as Starting Chirons

9.2.3 Terpene and α-Hydroxyl Acid as Starting Chirons

9.3 Total Synthesis of Terpenoids

9.3.1 Terpene as a Starting Chiron

9.4 Total Synthesis of Miscellaneous Natural Products

9.4.1 Amino Acids as Starting Chirons

9.5 Conclusions and Perspectives

References

10 Natural Product Synthesis for Drug Discovery and Chemical Biology

10.1 The Importance of Bioactive Natural Products in Biological Investigation

10.2 Bioactive Natural-Product-Inspired Chemical Biology

10.3 Natural Products in Drug Discovery

10.3.1 Natural Products as Antibody-Drug Conjugate (ADC) Payloads

10.4 TOS, DOS, FOS, and BOS in Natural Product Synthesis

10.4.1 Target-Oriented Synthesis (TOS)

10.4.2 Diversity-Oriented Synthesis (DOS)

10.4.3 Function-Oriented Synthesis (FOS)

10.4.4 Biology-Oriented Synthesis (BIOS)

10.5 Semisynthesis

10.6 Representative Natural-Product Drugs and Their Synthesis

10.6.1 Nicolaou and Yang’s Synthesis of Taxol

10.6.2 Danishefsky’s Synthesis of Epothilone A

10.6.3 Smith’s Synthesis of Kendomycin

10.6.4 Yao’s Synthesis of Camptothecin

10.6.5 Nicolaou and Li’s Synthesis of Platensimycin

10.6.6 Shasun Pharma Solutions Ltd’s Synthesis of (−)-Huperzine A

10.6.7 Baran’s Synthesis of Ingenol

10.7 Overview and Perspective

Acknowledgements

References

Chapter 11 Modern Technologies in Natural Product Synthesis

11.1 Visible-Light Photochemistry

11.2 Electrochemistry

11.3 Flow Chemistry

11.4 Flow Photochemistry

11.5 Flow Electrochemistry

11.6 Overview and Perspective

Acknowledgements

References

Chapter 12 Concluding Remarks and Perspectives

12.1 The Enantioselective Total Synthesis of Natural Products

12.2 A Novel Model of Total Synthesis: The Combination of Chemical Synthesis with Synthetic Biology

12.2.1 Seeberger’s One-Pot Photochemical Continuous-Flow Strategy

12.2.2 Wu’s “Dark Singlet Oxygen” Strategy

12.2.3 George’s “Green” Photochemical Strategies

12.2.4 A Novel Strategy Merging Synthetic Biology with Chemistry

12.2.5 Zhang’s Two-Step Catalytic Transformation of AA to Artemisinin: The End-Game?

12.3 The Robot Chemist and the Generalized Automation of Small-Molecule Synthesis

12.4 A Synergistic Future with Academia and Industry Coming to the Same Table

Acknowledgements

References

Index

EULA

The users who browse this book also browse


No browse record.