Laser Ablation of Energetic Materials ( Laser Ablation - From Fundamentals to Applications )

Publication series : Laser Ablation - From Fundamentals to Applications

Author: Ruiqi Shen Lizhi Wu Wei Zhang and Haonan Zhang  

Publisher: IntechOpen‎

Publication year: 2017

E-ISBN: INT6796171892

P-ISBN(Paperback): 9789535136996

P-ISBN(Hardback):  9789535137009

Subject: O469 Condensed Matter Physics

Keyword: 凝聚态物理学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Laser Ablation of Energetic Materials

Description

The initiation of explosives by laser is a new initiation method. Compared with traditional initiation methods, laser initiation has the characteristics of high reliability and high safety. It can be used as one of the alternative technologies for future initiation device. A microscopic understanding of the complex physical and chemical processes involved in the reaction process is essential for laser initiation. Shock initiation technology of laser-driven flyer was studied. Several typical laser-driven flyer targets researches were introduced. Some significant characteristics including velocity and impact stress of flyers were tested via photonic Doppler velocimetry and polyvinylidene fluoride pressure sensor, respectively. Some types of flyers including Al and Cu single-layer flyers and CuO/Cu, CuO/Al, and CuO/Al/Cu multilayer flyers with relatively high velocities were used to initiate PETN explosive. In order to give a better understanding of the mechanism of laser interaction with typical energetic materials (RDX, HMX, TNT, and HNS), a time of flight mass spectrometer (TOFMS) was used to detect the positive ions and the negative ions were produced in the laser-induced dissociation processes. The influences of laser wavelength, the laser fluence, and the delay time of the decomposition process have been studied as well. The results may throw some light on the laser interaction mechanism of energetic materials.

The users who browse this book also browse


No browse record.