Metal Organic Frameworks as Emerging Photocatalysts ( Semiconductor Photocatalysis - Materials, Mechanisms and Applications )

Publication series : Semiconductor Photocatalysis - Materials, Mechanisms and Applications

Author: Ahmad Alshammari Zheng Jiang and Kyle E. Cordova  

Publisher: IntechOpen‎

Publication year: 2016

E-ISBN: INT6138463489

P-ISBN(Paperback): 9789535124849

P-ISBN(Hardback):  9789535124832

Subject: O469 Condensed Matter Physics

Keyword: 凝聚态物理学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Metal Organic Frameworks as Emerging Photocatalysts

Description

Increasing number of metal-organic frameworks (MOFs) have recently been recognised as a new generation of emerging porous photocatalysts in photocatalysis and photoelectrocatalysis, since their intrinsic coordination structure between the metal cluster and organic ligands offers MOFs great flexibility to tune their semiconducting property for enhanced light harvesting. In order to improve their performance substantially and achieve widespread application of MOF photocatalysts, it is necessary to develop effective synthesis strategies and understand their semiconducting crystal structure, photocatalytic mechanism in depth. This chapter firstly provides a brief introduction of the MOF materials; this chapter addresses the crystallinity, porosity and electronic semiconducting structures that are essential in solar energy conversion. Established and innovative syntheses strategies of MOFs are then categorised and illustrated, followed by various characterisations techniques applied to investigate their structural and semiconducting properties (band structure and charge transfer), including X-ray Diffraction XRD, small angle X-ray Diffraction SAXRD, adsorption/desorption, UV-Vis, nuclear magnetic resonance (NMR), extended fine Auger structures (EXFAS), inelastic neutron scattering (INS) spectroscopy, high-resolution transmission electron microscopy (HR)TEM and electrochemical measurements. The photocatalytic and photoelectrocatalytic application of MOFs are introduced addressing

The users who browse this book also browse