Colloidal Photonic Crystals Containing Copper-Oxide and Silver Nanoparticles with Tunable Structural Colors ( Advances in Colloid Science )

Publication series : Advances in Colloid Science

Author: Chun-Feng Lai  

Publisher: IntechOpen‎

Publication year: 2016

E-ISBN: INT6271665007

P-ISBN(Paperback): 9789535127734

P-ISBN(Hardback):  9789535127741

Subject: O6-0 chemical principle and method

Keyword: 化学原理和方法

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Colloidal Photonic Crystals Containing Copper-Oxide and Silver Nanoparticles with Tunable Structural Colors

Description

In this chapter, we investigated polystyrene (PS) colloidal photonic crystal (CPhC) color films containing copper-oxide (CuO) nanoparticles (NPs) and silver (Ag) NPs and exhibiting tunable structural colors. PS CPhC color films containing CuO-NPs and Ag-NPs were prepared through thermal-assisted self-assembly by using a gravitational sedimentation method. Doped CuO-NPs and Ag-NPs deposited on the bottom of the substrate and acted as black materials that absorb background and scattering light. Experimental results showed that brilliant structural colors were enhanced because of the absorption of incoherently scattered light, and color saturation was increased by the distribution of metal NPs on PS CPhC surfaces. The brilliant structural colors of CuO-NPs/PS and Ag-NPs/PS hybrid CPhC color films were based on the scattering absorption and Bragg diffraction theory. The reflection peaks of metal-NPs/PS hybrid CPhCs and pure PS CPhCs were measured by UV-Visible reflection spectrometry and theoretically calculated based on the Bragg diffraction law. Additionally, the structural colors of metal-NPs/PS hybrid CPhC color films were assessed through color measurements based on the Commission International d’Eclairage 1931 standard colorimetric system. Finally, this chapter exhibits a simple method to generate tunable structural color of functional materials for numerous applications, such as in textile fabrics, bionic colors, catalysis, and paint.

The users who browse this book also browse