A General-Purpose Multiphase/Multispecies Model to Predict the Spread, Percutaneous Hazard, and Contact Dynamics for Nonporous and Porous Substrates and Membranes ( Surface Energy )

Publication series : Surface Energy

Author: Navaz Homayun Zand Ali Gat Amir and Atkinson Theresa  

Publisher: IntechOpen‎

Publication year: 2015

E-ISBN: INT5935460807

P-ISBN(Paperback): 9789535122166

P-ISBN(Hardback):  9789535122166

Subject: TH Machinery and Instrument Industry

Keyword: Energy technology & engineering

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

A General-Purpose Multiphase/Multispecies Model to Predict the Spread, Percutaneous Hazard, and Contact Dynamics for Nonporous and Porous Substrates and Membranes

Description

A computational model to solve the coupled transport equations with chemical reaction and phase change for a liquid sessile droplet or the contact and spread of a sessile droplet between two approaching porous or non-porous surfaces, is developed. The model is general therefore it can be applied to toxic chemicals (contact hazard), drug delivery through porous organs and membranes, combustion processes within porous material, and liquid movements in the ground. The equation of motion and the spread of the incompressible liquid available on the primary surface for transfer into the contacting surface while reacting with other chemicals (or water) and/or the solid substrate are solved in a finite difference domain with adaptive meshing. The comparison with experimental data demonstrated the model is robust and accurate. The impact of the initial velocity on the spread topology and mass transfer into the pores is also addressed.

The users who browse this book also browse