Effect of spad techniques and planting density on 'Y' leaf nitrogen concentration in transplanted rice

Author: Janaki P.   Thiyagarajan T. M.  

Publisher: American Association for Laboratory Animal Science

ISSN: 0238-0161

Source: Acta Agronomica Hungarica, Vol.52, Iss.1, 2004-06, pp. : 95-104

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Field experiments were conducted in June-September 1998 and 1999 with rice variety ASD18 at the wetland farm of Tamil Nadu Agricultural University, in Coimbatore, India to examine variations in 'Y' leaf (youngest fully expanded leaf) N concentration as influenced by different planting densities and N management strategies in a split plot design. The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plots treatments of five N management approaches. The results revealed that the nitrogen concentration progressively declined with growth, the decline being steep up to 35 days after transplanting, wereafter the values became almost linear up to the flowering stage in all the treatments. The mean 'Y' leaf N was found to be significantly higher at 33 hills m-2 (45.1 g kg-1), while the other two densities were on par (42.9 g kg-1). When N application was based on chlorophyll meter (SPAD) values the leaf N concentration was maintained at a level of 39.2 to 51.9 g kg-1 to produce maximum grain yield. A significant correlation was observed between the chlorophyll meter values and 'Y' leaf N concentrations at various days after transplanting (r values ranged from 0.57* to 0.83**), while the correlation was highly significant during the major physiological growth stages. Though the 'Y' leaf content was significantly higher in the treatment involving Sesbania rostrata green manuring + 150 kg N applied in splits, the grain yield produced was on par in all the N applied treatments. A highly significant correlation was observed between the grain yield and both 'Y' leaf N content and SPAD values during various growth periods.