Braid and Knot Theory in Dimension Four

Author: Seiichi Kamada  

Publisher: American Mathematical Society‎

Publication year: 2002

E-ISBN: 9781470413224

P-ISBN(Paperback): 9780821829691

P-ISBN(Hardback):  9780821829691

Subject: O189.1 general topology

Keyword: Geometry and Topology

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Braid and Knot Theory in Dimension Four

Description

Braid theory and knot theory are related via two famous results due to Alexander and Markov. Alexander's theorem states that any knot or link can be put into braid form. Markov's theorem gives necessary and sufficient conditions to conclude that two braids represent the same knot or link. Thus, one can use braid theory to study knot theory and vice versa. In this book, the author generalizes braid theory to dimension four. He develops the theory of surface braids and applies it to study surface links. In particular, the generalized Alexander and Markov theorems in dimension four are given. This book is the first to contain a complete proof of the generalized Markov theorem. Surface links are studied via the motion picture method, and some important techniques of this method are studied. For surface braids, various methods to describe them are introduced and developed: the motion picture method, the chart description, the braid monodromy, and the braid system. These tools are fundamental to understanding and computing invariants of surface braids and surface links. Included is a table of knotted surfaces with a computation of Alexander polynomials. Braid techniques are extended to represent link homotopy classes. The book is geared toward a wide audience, from graduate students to specialists. It would make a suitable text for a graduate course and a valuable resource for researchers.

The users who browse this book also browse