The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds

Author: M. Lübke;A. Teleman  

Publisher: American Mathematical Society‎

Publication year: 2013

E-ISBN: 9781470404673

P-ISBN(Paperback): 9780821839133

P-ISBN(Hardback):  9780821839133

Subject: O174.56 Several Complex Variable Function

Keyword: Geometry and Topology

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds

Description

We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds, and we discuss differential geometric properties of the corresponding moduli spaces. This correspondence refers to moduli spaces of “universal holomorphic oriented pairs”. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems) are special cases of this universal classification problem. Our Kobayashi-Hitchin correspondence relates the complex geometric concept “polystable oriented holomorphic pair” to the existence of a reduction solving a generalized Hermitian-Einstein equation. The proof is based on the Uhlenbeck-Yau continuity method. Using ideas from Donaldson theory, we further introduce and investigate canonical Hermitian metrics on such moduli spaces. We discuss in detail remarkable classes of moduli spaces in the non-Kählerian framework: Oriented holomorphic structures, Quot-spaces, oriented holomorphic pairs and oriented vortices, non-abelian Seiberg-Witten monopoles.

The users who browse this book also browse