Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints

Author: Sergiu Aizicovici;Nikolaos S. Papageorgiou;Vasile Staicu  

Publisher: American Mathematical Society‎

Publication year: 2013

E-ISBN: 9781470405212

P-ISBN(Paperback): 9780821841921

P-ISBN(Hardback):  9780821841921

Subject: O175.25 Elliptic Equations

Keyword: Differential Equations

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints

Description

In the first part of this paper, the authors examine the degree map of multivalued perturbations of nonlinear operators of monotone type and prove that at a local minimizer of the corresponding Euler functional, this degree equals one. Then they use this result to prove multiplicity results for certain classes of unilateral problems with nonsmooth potential (variational-hemivariational inequalities). They also prove a multiplicity result for a nonlinear elliptic equation driven by the p-Laplacian with a nonsmooth potential (hemivariational inequality) whose subdifferential exhibits an asymmetric asymptotic behavior at $+\infty$ and $-\infty$.

The users who browse this book also browse