Testosterone Stimulates Mounting Behavior and Arginine Vasotocin Expression in the Brain of both Sexual and Unisexual Whiptail Lizards

Publisher: Karger

E-ISSN: 1661-5433|1|1|77-84

ISSN: 1661-5425

Source: Sexual Development, Vol.1, Iss.1, 2006-12, pp. : 77-84

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

In nonmammalian vertebrates the abundance of arginine vasotocin (AVT) neurons in the brain is sexually dimorphic, a pattern that is modulated by testicular androgen. This peptide is thought to be involved in the control of male-typical mounting behaviors. The all-female desert-grasslands whiptail (Cnemidophorus uniparens) reproduces by obligate parthenogenesis and in nature no males exist, but eggs treated with aromatase inhibitor hatch into individuals (called virago C. uniparens) having testes, accessory sex structures, high circulating concentrations of androgens, and exhibiting only male-like copulatory behavior. To examine the ‘sexual’ dimorphism of AVT-containing neurons in these animals, we compared AVT immunoreactivity in gonadectomized control and virago C. uniparens, with that of gonadectomized male and female Cnemidophorus inornatus, a sexual species that is the maternal ancestor to the parthenogenetic species. Mounting behavior is elicited in both species and both sexes by testosterone, and it was predicted that the distribution and abundance of AVT cell bodies and fibers would reflect the propensity of males and females of the two species to display male-typical copulatory behavior. Since both this propensity and AVT abundance are controlled by androgens, we compared testosterone-implanted and control animals within each group. Testosterone treatment generally increased AVT abundance, except in lab-reared parthenoforms, in which testosterone treatment was the least effective in inducing male-like copulatory behavior.

Related content