Publication series :Student Mathematical Library
Author: Robert Hardt;Steven J. Cox;Robin Forman
Publisher: American Mathematical Society
Publication year: 2004
E-ISBN: 9781470421380
P-ISBN(Paperback): 9780821837207
Subject: O176 variational method
Keyword: Analysis
Language: ENG
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Six Themes on Variation
Description
The calculus of variations is a beautiful subject with a rich history and with origins in the minimization problems of calculus. Although it is now at the core of many modern mathematical fields, it does not have a well-defined place in most undergraduate mathematics courses or curricula. This small volume should nevertheless give the undergraduate reader a sense of its great character and importance. Interesting functionals, such as area or energy, often give rise to problems whose most natural solution occurs by differentiating a one-parameter family of variations of some function. The critical points of the functional are related to the solutions of the associated Euler-Lagrange equation. These differential equations are at the heart of the calculus of variations. Some of the topics addressed here are Morse theory, wave mechanics, minimal surfaces, soap bubbles, and modeling traffic flow. All are readily accessible to advanced undergraduates. This book is derived from a workshop that was sponsored by Rice University.
Chapter