Chirality in Supramolecular Assemblies :Causes and Consequences

Publication subTitle :Causes and Consequences

Author: F. Richard Keene  

Publisher: John Wiley & Sons Inc‎

Publication year: 2016

E-ISBN: 9781118867327

P-ISBN(Paperback): 9781118867341

P-ISBN(Hardback):  9781118867341

Subject: O641.3 intermolecular interaction, Supramolecular Chemistry

Keyword: supramolecular, chirality, stereochemistry, host-guest behaviour, chirality at interfaces, biocatalysis, homochirality, functional materials, network solids, organic hosts

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Chirality in Supramolecular Assemblies

Description

Supramolecular chemistry deals with the organisation of molecules into defined assemblies using non-covalent interactions, including weaker and reversible interactions such as hydrogen bonds, and metal-ligand interactions.  The aspect of stereochemistry within such chemical architectures, and in particular chirality, is of special interest as it impacts on considerations of molecular recognition, the development of functional materials, the vexed question of homochirality, nanoscale effects of interactions at interfaces, biocatalysis and enzymatic catalysis, and applications in organic synthesis.

Chirality in Supramolecular Assemblies addresses many of these aspects, presenting a broad overview of this important and rapidly developing interdisciplinary field. Topics covered include:

  • Origins of molecular and topological chirality
  • Homochirogenesis
  • Chirality in crystallinity
  • Host-guest behavior
  • Chiral influences in functional materials
  • Chirality in network solids and coordination solids
  • Aspects of chirality at interfaces
  • Chirality in organic assemblies
  • Chirality related to biocatalysis and enzymes in organic synthesis.

This book is a valuable reference for researchers in the molecular sciences, materials science and biological science working with chiral supramolecular systems. It provides summaries and special insights by acknowledged international experts in the various fields.

Chapter

1.2.2 Dynamic and Supramolecular Chirality

1.3 Topological Chirality

1.3.1 The Molecular Graph

1.3.2 Topological Chirality

1.3.3 Topologically Relevant Molecules that are not Topologically Chiral

1.3.4 Topologically Chiral Milestone Molecules (Based on Covalent Bonds)

1.4 Conclusion

References

Chapter 2 Homochirogenesis and the Emergence of Lifelike Structures

2.1 Introduction and Scope

2.2 The Racemic State: Mirror Symmetry Breaking

2.2.1 Is There a Chiral Ancestor?

2.3 Asymmetric Oligomerization

2.3.1 Homochirality and Critical Chain Length

2.3.2 Polymerization Models: Homochiral Peptides

2.3.3 Lessons from Artificial Systems

2.4 Biochirality in Active Sites

2.5 Conclusions

Acknowledgements

References

Chapter 3 Aspects of Crystallization and Chirality

3.1 Introduction

3.2 Crystal Space Groups

3.2.1 Space Group Listing

3.2.2 Data and Statistics

3.2.3 Space Group Prediction

3.3 Fundamentals of Crystallization for a Racemic Mixture

3.3.1 Racemic Compound

3.3.2 Solid Solution

3.3.3 Enantiopure Domains

3.3.4 Conglomerates

3.4 More Complex Crystallization Behavior

3.4.1 Crystallographically Independent Molecules

3.4.2 Kryptoracemates

3.4.3 Quasiracemates

3.5 Multiple Crystal Forms

3.5.1 Polymorphs

3.5.2 Solvates

3.5.3 Hydrates

3.5.4 Cocrystals

3.6 Conglomerates Revisited

3.6.1 Frequency of Conglomerate Formation

3.6.2 Enantiomer Resolution

3.6.3 Increasing the Chiral Pool

3.6.4 Chemical Modification

References

Chapter 4 Complexity of Supramolecular Assemblies

4.1 Introduction

4.1.1 Supramolecular Chirality

4.1.2 Self-Assembly

4.1.3 Supramolecular Chirogenesis

4.2 Generating Supramolecular Chirality through Assembly of Achiral Components

4.2.1 Supramolecular Chirality – Metallo‐Helicates

4.3 Enantioselective Supramolecular Assemblies

4.3.1 Mononuclear Bundles

4.3.2 Helicates

4.3.3 Higher Order Enantioselective Assemblies

4.4 Conclusions and Future Outlook

References

Chapter 5 Chirality in the Host‐Guest Behaviour of Supramolecular Systems

5.1 An Introduction to Chiral Recognition and its Importance

5.2 Chiral Hosts for Chiral Guests

5.2.1 Theory of Chiral Recognition

5.2.2 Chiral Crown Ethers for Chiral Ammonium Cations

5.2.3 Hosts for Chiral Anions

5.2.4 Hosts for Chiral Zwitterions and Neutral Molecules

5.3 Conclusions: Summary and Future Directions

References

Chapter 6 Chiral Influences in Functional Molecular Materials

6.1 Introduction

6.2 Functional Molecular Materials in Different States

6.2.1 Crystals

6.2.2 Liquid Crystals

6.2.3 Gels

6.3 Switching

6.4 Conducting Materials

6.5 Magnetic Materials

6.6 Sensors

6.7 Conclusions and Outlook

Acknowledgements

References

Chapter 7 Chirality in Network Solids

7.1 Introduction

7.2 Chirality in Inorganic Network Solids

7.3 Synthesis of Chiral Coordination Polymers

7.3.1 Chiral Induction, Templating and Symmetry Breaking

7.3.2 Incorporation of Small Chiral Co‐Ligands

7.3.3 Design and Application of Chiral Ligands

7.3.4 Post-Synthetic Modification

7.4 Applications of Chiral Coordination Polymers

7.4.1 Enantioselective Catalysis

7.4.2 Enantioselective Separations

7.5 Summary and Outlook

References

Chapter 8 Chiral Metallosupramolecular Polyhedra

8.1 Introduction

8.2 Basic Design Principles

8.3 Chiral Polyhedra from Achiral Components

8.3.1 Tetrahedra

8.3.2 Higher Order Polyhedra

8.4 Stereochemical Communication

8.4.1 Stereocontrol through Ligand Modification

8.4.2 Mechanisms of Interconversion between Diastereomers

8.5 Resolution of Racemic Metallo‐Supramolecular Polyhedra

8.6 Chiral Polyhedra from Chiral Molecular Components

8.7 Conclusions and Outlook

References

Chapter 9 Chirality at the Solution/Solid‐State Interface

9.1 Self-Assembly at the Solution / Solid-State Interface

9.2 Chirality Expression at the Solution / Solid‐State Interface

9.2.1 Enantiopure Molecules at the Solution / Solid‐State Interface

9.2.2 Racemates at the Solution / Solid-State Interface

9.2.3 Achiral Molecules at the Solution / Solid-State Interface

9.2.4 Other Factors Influencing 2D Chirality

9.3 Chiral Induction / Amplification at the Solution / Solid‐State Interface

9.3.1 Sergeants and Soldiers

9.3.2 Chiral Auxiliaries

9.3.3 Chiral Solvents

9.3.4 Majority Rules

9.3.5 Magnetic Fields

9.4 Towards Applications

9.4.1 Chiral Resolution at the Solution / Solid‐State Interface

9.4.2 Enantioselective Adsorption at the Solution / Solid-State Interface

9.5 Conclusions

References

Chapter 10 Nanoscale Aspects of Chiral Nucleation and Propagation

10.1 Introduction

10.1.1 Chirality at Surfaces

10.1.2 Tracking Chiral Nucleation at Surfaces

10.2 Systems of Discussion

10.2.1 System 1: Co-TPP on Cu(110)- Chirogenesis via Intermolecular Interactions

10.2.2 System 2: Enantiopure and Racemic Mixtures of a Chiral Bis‐lactate – Chiral Segregation Nipped in the Bud

10.2.3 System 3: Tartaric Acid on Cu(110): Highly Nonlinear Chiral Crystallization

10.3 Conclusions

References

Chapter 11 Chirality in Organic Hosts

11.1 Introduction

11.2 Chiral Hosts in Analytical Applications

11.3 Chiral Hosts in Asymmetric Reactions

11.3.1 Native Chiral Hosts

11.3.2 Hosts Modified with Achiral Substituents

11.3.3 Hosts Modified with Chiral Substituents

11.3.4 Hosts Modified with Metal‐Coordinating Ligands

11.4 Conclusion

Acknowledgements

References

Chapter 12 Chirality Related to Biocatalysis and Enzymes in Organic Synthesis

12.1 Introduction

12.2 Biocatalysis

12.2.1 Historical Context

12.2.2 Importance of Biocatalysis

12.2.3 Biocatalytic Methodologies

12.2.4 Enzyme Classes

12.2.5 Advantages and Disadvantages of Biocatalysis

12.2.6 Whole Cells/Isolated Enzymes

12.3 Biocatalytic Methodologies: Kinetic/Dynamic Kinetic Resolution and Asymmetric Transformations/Chemoselective Desymmetrizations

12.3.1 Kinetic Resolution

12.3.2 Dynamic Kinetic Resolution

12.3.3 Asymmetric Transformations

12.3.4 Chemoselective Desymmetrizations

12.4 Optimization of Biocatalyst Performance

12.4.1 Organic Solvents

12.4.2 Immobilization

12.4.3 Ionic Liquids

12.5 Protein Engineering

12.5.1 Directed Evolution and Semi‐Rational Design

12.5.2 Rational Design

12.6 Hydrolysis/Reverse Hydrolysis

12.6.1 Hydrolases in Biocatalysis – An Overview

12.6.2 Esterification/Hydrolysis of Esters

12.6.3 Epoxide Hydrolases

12.6.4 Hydrolases in the Resolution of Chiral Amines

12.7 Redox Reactions

12.7.1 Cofactors

12.7.2 Reduction of Ketones

12.7.3 Aldehyde Reductions

12.7.4 Reductive Aminations

12.7.5 Reduction of C = C Bonds

12.7.6 Enantioselective Oxidation/Reduction Cascade Reactions

12.7.7 Oxidases

12.7.8 Other Oxidations

12.8 C-C and Other C-X Bond Formation

12.8.1 C-C Bond Formation

12.8.2 Halohydrin Dehalogenases

12.8.3 Nitrile Hydratases

12.8.4 Addition of H2O/NH3 to C = C Bonds

12.9 Future and Outlook

References

Index

EULA

The users who browse this book also browse