Survey Sampling Theory and Applications

Author: Arnab   Raghunath  

Publisher: Elsevier Science‎

Publication year: 2017

E-ISBN: 9780128118979

P-ISBN(Paperback): 9780128118481

Subject: O211 probability (probability theory, probability theory)

Keyword: 概率论(几率论、或然率论),数理科学和化学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Survey Sampling Theory and Applications

Description

Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling.

The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students.

  • Covers a wide spectrum of topics on survey sampling and statistics
  • Serves as an ideal text for graduate students and researchers in survey sampling theory and applications
  • Contains material on recent developments in survey sampling not covered in other books
  • Illustrates theories using numerical examples and exercises

Chapter

1.7 DATA

1.7.1 Sample Space

1.8 SAMPLING FROM HYPOTHETICAL POPULATIONS

1.8.1 Sampling From a Uniform Population

1.8.2 Sampling From a Normal Population

1.8.3 Sampling From a Binomial Population

1.9 EXERCISES

2 - Unified Sampling Theory: Design-Based Inference

2.1 INTRODUCTION

2.2 DEFINITIONS AND TERMINOLOGIES

2.2.1 Noninformative and Adaptive (Sequential) Sampling Designs

2.2.2 Estimator and Estimate

2.2.3 Unbiased Estimator

2.2.4 Mean Square Error and Variance

2.2.5 Uniformly Minimum Variance Unbiased Estimator

2.3 LINEAR UNBIASED ESTIMATORS

2.3.1 Conditions of Unbiasedness

2.3.2 Horvitz-Thompson Estimator

2.3.3 Hansen-Hurwitz Estimator

2.3.4 Unbiased Ratio Estimator

2.3.5 Difference and Generalized Difference Estimator

2.4 PROPERTIES OF THE HORVITZ-THOMPSON ESTIMATOR

2.5 NONEXISTENCE THEOREMS

2.5.1 Unicluster Sampling Design

2.5.2 Class of Linear Homogeneous Unbiased Estimators

2.5.3 Optimality of the Horvitz-Thompson Estimator

2.5.4 Class of All Unbiased Estimators

2.5.5 Class of Linear Unbiased Estimators

2.6 ADMISSIBLE ESTIMATORS

2.7 SUFFICIENCY IN FINITE POPULATION

2.7.1 Sufficiency and Likelihood

2.7.2 Minimal Sufficient Statistic

2.7.3 Rao-Blackwellization

2.8 SAMPLING STRATEGIES

2.8.1 Unbiased Strategy

2.8.2 Uniformly Minimum Variance Unbiased Strategy

2.8.3 Admissible Strategies

2.8.4 Minimax Strategy

2.9 DISCUSSIONS

2.10 EXERCISES

3 - Simple Random Sampling

3.1 INTRODUCTION

3.2 SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

3.2.1 Sampling Scheme

3.2.2 Estimation of Population Mean and Variance

3.2.3 Estimation of Population Covariance

3.2.4 Estimation of Population Proportion

3.2.5 Estimation of Domain Mean and Total

3.3 SIMPLE RANDOM SAMPLING WITH REPLACEMENT

3.3.1 Sampling Scheme

3.3.2 Estimation of the Population Mean and Variance

3.3.3 Estimation of Population Proportion

3.3.4 Rao-Blackwellization

3.4 INTERVAL ESTIMATION

3.4.1 Confidence Intervals for Mean and Proportion

3.4.1.1 Large Sample Size

3.4.1.2 Small Sample Size

3.5 DETERMINATION OF SAMPLE SIZE

3.5.1 Consideration of the Cost of a Survey

3.5.2 Consideration of the Efficiency of Estimators

3.5.2.1 Given Variance

3.5.2.2 Given Coefficient of Variation

3.5.2.3 Given Margin of Permissible Error

3.5.3 Use of Chebyshev Inequality

3.6 INVERSE SAMPLING

3.6.1 Simple Random Sampling Without Replacement

3.6.2 Simple Random Sampling With Replacement

3.7 EXERCISES

4 - Systematic Sampling

4.1 INTRODUCTION

4.2 LINEAR SYSTEMATIC SAMPLING

4.2.1 Linear Systematic Sampling With N/n=k an Integer

4.2.2 Linear Systematic Sampling With N/n=k Not an Integer

4.2.3 Estimation of the Population Mean and Its Variance

4.2.4 Nonexistence of Unbiased Variance Estimator

4.3 EFFICIENCY OF SYSTEMATIC SAMPLING

4.3.1 Comparison With Simple Random Sampling

4.3.2 Comparison With Stratified Sampling

4.3.3 Random Arrangement of Units

4.3.4 Population With Linear Trend

4.3.4.1 End Corrections

4.3.4.2 Balanced Systematic Sampling

4.3.5 Population With Periodic Variation

4.3.6 Autocorrelated Population

4.4 LINEAR SYSTEMATIC SAMPLING USING FRACTIONAL INTERVAL

4.5 CIRCULAR SYSTEMATIC SAMPLING

4.5.1 Circular Systematic Sampling With k=N/n as an Integer

4.5.2 Circular Systematic Sampling With N/n is Not an Integer

4.6 VARIANCE ESTIMATION

4.6.1 Single Systematic Sample

4.6.1.1 Random Arrangements of Units

4.6.1.2 Stratified Sampling With One Unit Per Stratum

4.6.1.3 Presence of Linear Trend

4.6.1.4 Presence of Autocorrelation Between Successive Units

4.6.1.5 Splitting of a Systematic Sample

4.6.2 Several Systematic Samples

4.7 TWO-DIMENSIONAL SYSTEMATIC SAMPLING

4.8 EXERCISES

5 - Unequal Probability Sampling

5.1 INTRODUCTION

5.2 PROBABILITY PROPORTIONAL TO SIZE WITH REPLACEMENT SAMPLING SCHEME

5.2.1 Cumulative Total Method

5.2.2 Lahiri's Method

5.2.3 Hansen-Hurwitz Estimator and its Variance

5.2.4 Rao-Blackwellization

5.3 PROBABILITY PROPORTIONAL TO SIZE WITHOUT REPLACEMENT SAMPLING SCHEME

5.3.1 Raj's Estimator and its Variance

5.3.2 Rao-Blackwellization

5.3.2.1 Murthy's Estimator

5.4 INCLUSION PROBABILITY PROPORTIONAL TO MEASURE OF SIZE SAMPLING SCHEME

5.4.1 Inclusion Probability Proportional to Measure of Size Sampling With n=2

5.4.1.1 Brewer's Sampling Scheme

5.4.1.2 Durbin's Sampling Scheme

5.4.1.3 Hanurav's Sampling Scheme

5.4.2 Inclusion Probability Proportional to Measure of Size Sampling with n﹥2

5.4.2.1 Lahiri-Midzuno-Sen Sampling Design

5.4.2.2 Probability Proportionate to Size Systematic Sampling Scheme

5.4.2.3 Sampford's Sampling Scheme

5.4.2.3.1 Comparison of Efficiency

5.4.2.4 Poisson (or Bernoulli) Sampling

5.4.2.5 Use of Combinatorics

5.4.2.6 The Nearest Proportional to Size Sampling

5.5 PROBABILITY PROPORTIONAL TO AGGREGATE SIZE WITHOUT REPLACEMENT

5.6 RAO-HARTLEY-COCHRAN SAMPLING SCHEME

5.7 COMPARISON OF UNEQUAL (VARYING) PROBABILITY SAMPLING DESIGNS

5.8 EXERCISES

6 - Inference Under Superpopulation Model

6.1 INTRODUCTION

6.2 DEFINITIONS

6.2.1 Sampling Strategy

6.2.2 Noninformative Sampling Design

6.2.3 Design-Unbiased (or p-Unbiased) Estimator

6.2.4 Model-Unbiased (or ξ-Unbiased) Estimator

6.2.5 Model Design-Unbiased (or pξ-Unbiased) Estimator

6.2.6 Design-Based Inference

6.2.7 Model-Based Inference

6.2.8 Model-Assisted Inference

6.2.9 Optimal Estimator

6.2.10 Optimal Strategy

6.3 MODEL-ASSISTED INFERENCE

6.3.1 Optimal Design-Unbiased Predictors

6.3.1.1 Product Measure Model

6.3.1.2 Equicorrelation Model

6.3.1.3 Transformation Model

6.3.2 Optimal Model Design-Unbiased Prediction

6.3.3 Exchangeable Model

6.3.4 Random Permutation Model

6.4 MODEL-BASED INFERENCE

6.4.1 Optimal Model-Unbiased Prediction

6.4.1.1 Product Measure Model

6.4.1.2 Transformation Model

6.4.1.3 Multiple Regression Model

6.5 ROBUSTNESS OF DESIGNS AND PREDICTORS

6.5.1 Robustness of Predictors

6.5.2 Balanced Sampling Design

6.5.3 Polynomial Regression Model

6.5.4 Balanced Sample of Order k

6.5.5 Optimality of Balanced Sampling

6.6 BAYESIAN INFERENCE

6.6.1 Bayes Estimator

6.7 COMPARISON OF STRATEGIES UNDER SUPERPOPULATION MODELS

6.7.1 Hansen-Hurwitz Strategy With Others

6.7.2 Horvitz-Thompson and Rao-Hartley-Cochran Strategy

6.7.3 Horvitz-Thompson and Lahiri-Midzuno-Sen Strategy

6.7.4 Rao-Hartley-Cochran and Lahiri-Midzuno-Sen Strategy

6.8 DISCUSSIONS

6.9 EXERCISES

7 - Stratified Sampling

7.1 INTRODUCTION

7.2 DEFINITION OF STRATIFIED SAMPLING

7.3 ADVANTAGES OF STRATIFIED SAMPLING

7.4 ESTIMATION PROCEDURE

7.4.1 Estimation of Population Mean

7.4.1.1 Arbitrary Fixed Sample Size Design

7.4.1.2 Simple Random Sampling Without Replacement

7.4.1.3 Probability Proportional to Size With Replacement Sampling

7.4.1.4 Simple Random Sampling With Replacement

7.4.2 Estimation of Population Proportion

7.4.2.1 Simple Random Sampling Without Replacement

7.4.2.2 Simple Random Sampling With Replacement

7.4.3 Interval Estimation

7.5 ALLOCATION OF SAMPLE SIZE

7.5.1 Optimum Allocation for Fixed Cost

7.5.2 Optimum Allocation for Fixed Variance

7.5.3 Simple Random Sampling Without Replacement

7.5.4 Simple Random Sampling With Replacement

7.5.5 Probability Proportional to Size With Replacement Sampling

7.5.6 Neyman Optimum Allocation

7.5.7 Proportional Allocation

7.6 COMPARISON BETWEEN STRATIFIED AND UNSTRATIFIED SAMPLING

7.6.1 Simple Random Sampling Without Replacement

7.6.2 Probability Proportional to Size With Replacement Sampling

7.6.3 Inclusion Probability Proportional to Size Sampling Scheme

7.7 CONSTRUCTION OF STRATA

7.7.1 Optimum Points of Stratification

7.7.1.1 Proportional Allocation

7.7.1.2 Optimum Allocation

7.7.2 Dalenius and Hodges's Approximation

7.7.3 Other Methods

7.8 ESTIMATION OF GAIN DUE TO STRATIFICATION

7.8.1 Simple Random Sampling Without Replacement

7.8.2 Probability Proportional to Size With Replacement Sampling

7.9 POSTSTRATIFICATION

7.10 EXERCISES

8 - Ratio Method of Estimation

8.1 INTRODUCTION

8.2 RATIO ESTIMATOR FOR POPULATION RATIO

8.2.1 Exact Expression of Bias and Mean-Square Error

8.2.2 Approximate Expression of Bias and Mean-Square Errors

8.3 RATIO ESTIMATOR FOR POPULATION TOTAL

8.3.1 Efficiency of the Ratio Estimator

8.3.2 Optimality of the Ratio Estimator

8.4 BIASES AND MEAN-SQUARE ERRORS FOR SPECIFIC SAMPLING DESIGNS

8.4.1 Fixed Effective Sample Size (n) Design

8.4.2 Simple Random Sampling Without Replacement

8.4.3 Probability Proportional to Size With Replacement

8.4.4 Simple Random Sampling With Replacement

8.5 INTERVAL ESTIMATION

8.6 UNBIASED RATIO, ALMOST UNBIASED RATIO, AND UNBIASED RATIO-TYPE ESTIMATORS

8.6.1 Unbiased Ratio Estimator

8.6.2 Almost Unbiased Ratio Estimator

8.6.3 Unbiased Ratio-Type Estimators

8.6.4 Hartley-Ross Estimator

8.7 RATIO ESTIMATOR FOR STRATIFIED SAMPLING

8.7.1 Separate Ratio Estimator

8.7.2 Combined Ratio Estimator

8.7.3 Comparison Between the Separate and Combined Ratio Estimators

8.8 RATIO ESTIMATOR FOR SEVERAL AUXILIARY VARIABLES

8.8.1 Simple Random Sampling Without Replacement

8.9 EXERCISES

9 - Regression, Product, and Calibrated Methods of Estimation

9.1 INTRODUCTION

9.2 DIFFERENCE ESTIMATOR

9.3 REGRESSION ESTIMATOR

9.3.1 Exact Expression of Bias

9.3.2 Approximate Expression of Bias

9.3.2.1 Bias Under Simple Random Sampling Without Replacement

9.3.3 Approximate Expression of the Mean Square Error

9.3.4 Mean Square Errors for Some Sampling Designs

9.3.4.1 Arbitrary Fixed Effective Sample Size Design

9.3.4.2 Simple Random Sampling Without Replacement

9.3.5 Efficiency of Regression Estimator

9.3.5.1 Comparison With the Ratio Estimator

9.3.6 Optimality of the Regression Estimator

9.3.7 Unbiased Regression Estimator

9.3.7.1 Singh and Srivastava Sampling Scheme

9.3.8 Stratified Regression Estimator

9.3.8.1 Separate Regression Estimator

9.3.8.2 Combined Regression Estimator

9.3.8.3 Comparison Between Combined and Separate Regression Estimators

9.3.9 Regression Estimator for Several Auxiliary Variables

9.3.9.1 Multivariate Regression Estimator

9.3.9.2 Two Auxiliary Variables

9.3.9.3 Raj's Regression Estimator

9.4 PRODUCT METHOD OF ESTIMATION

9.4.1 Bias of the Product Estimator

9.4.2 Mean Square Error of the Product Estimator

9.4.3 Comparison With the Conventional Estimator

9.4.4 Product Estimator for a Few Sampling Designs

9.4.4.1 Fixed Effective Sample Size Design

9.4.4.2 Simple Random Sampling Without Replacement

9.4.5 Unbiased Product Type Estimators

9.4.5.1 Simple Random Sampling Without Replacement

9.5 COMPARISON BETWEEN THE RATIO, REGRESSION, PRODUCT, AND CONVENTIONAL ESTIMATORS

9.6 DUAL TO RATIO ESTIMATOR

9.6.1 Bias of the Dual Estimator

9.6.2 Mean Square Error of the Dual Estimator

9.6.3 Comparison With Other Estimators

9.6.3.1 Conventional Estimator

9.6.3.2 Ratio Estimator

9.6.3.3 Product Estimator

9.7 CALIBRATION ESTIMATORS

9.7.1 Efficiency of Calibrated Estimator

9.7.2 Calibration Estimator for Several Auxiliary Variables

9.8 EXERCISES

APPENDIX 9A

10 - Two-Phase Sampling

10.1 INTRODUCTION

10.2 TWO-PHASE SAMPLING FOR ESTIMATION

10.2.1 Difference Method of Estimation

10.2.1.1 Arbitrary Sampling Design

10.2.1.2 Simple Random Sampling Without Replacement

10.2.1.3 Efficiency Under Simple Random Sampling Without Replacement

10.2.1.4 Probability Proportional to Size With Replacement Sampling

10.2.2 Ratio Method of Estimation

10.2.2.1 Approximate Expression of Bias

10.2.2.2 Approximate Expression of Mean Square Error

10.2.2.3 Simple Random Sampling Without Replacement

10.2.2.4 Optimal Allocation Under Simple Random Sampling Without Replacement

10.2.3 Regression Method of Estimation

10.2.3.1 Approximate Expressions of Bias and Mean Square Errors

10.2.3.2 Arbitrary Sampling Design

10.2.3.3 Simple Random Sampling Without Replacement

10.2.3.4 Optimum Allocation

10.3 TWO-PHASE SAMPLING FOR STRATIFICATION

10.3.1 Estimation of Mean and Variance

10.3.2 Proportional Allocation

10.3.3 Estimation of Proportion

10.3.4 Optimum Allocation of Sample Sizes

10.4 TWO-PHASE SAMPLING FOR SELECTION OF SAMPLE

10.4.1 Probability Proportional to Size With Replacement Sampling

10.4.2 Rao-Hartley-Cochran Sampling

10.5 TWO-PHASE SAMPLING FOR STRATIFICATION AND SELECTION OF SAMPLE

10.6 EXERCISES

11 - Repetitive Sampling

11.1 INTRODUCTION

11.2 ESTIMATION OF MEAN FOR THE MOST RECENT OCCASION

11.2.1 Sampling on Two Occasions

11.2.1.1 Sampling Scheme

11.2.1.2 General Method of Estimation

11.2.1.3 Simple Random Sampling Without Replacement

11.2.1.3.1 Optimum Allocation of the Matched Sample

11.2.1.4 Probability Proportional to Size With Replacement Sampling

11.2.1.5 Simple Random Sampling With Replacement

11.2.1.6 Sampling Over Two Occasions: Stratifying the Initial Sample

11.2.2 Sampling More Than Two Occasions

11.2.2.1 Probability Proportional to Size With Replacement Sampling

11.2.2.2 Simple Random Sampling With Replacement

11.2.2.2.1 Estimator for the Total on the hth Occasion

11.3 ESTIMATION OF CHANGE OVER TWO OCCASIONS

11.3.1 Simple Random Sampling Without Replacement

11.4 ESTIMATION OF MEAN OF MEANS

11.4.1 Simple Random Sampling Without Replacement

11.5 EXERCISES

12 - Cluster Sampling

12.1 INTRODUCTION

12.2 ESTIMATION OF POPULATION TOTAL AND VARIANCE

12.2.1 Arbitrary Sampling Design

12.2.2 Simple Random Sampling Without Replacement

12.3 EFFICIENCY OF CLUSTER SAMPLING

12.3.1 Optimum Choice of Cluster Size

12.4 PROBABILITY PROPORTIONAL TO SIZE WITH REPLACEMENT SAMPLING

12.4.1 Simple Random Sampling With Replacement

12.5 ESTIMATION OF MEAN PER UNIT

12.5.1 Examples

12.5.1.1 Arbitrary Sampling Design

12.5.1.2 Simple Random Sampling Without Replacement

12.6 EXERCISES

13 - Multistage Sampling

13.1 INTRODUCTION

13.2 TWO-STAGE SAMPLING SCHEME

13.3 ESTIMATION OF THE POPULATION TOTAL AND VARIANCE

13.3.1 First-Stage Arbitrary Sampling Designs and Second-Stage Simple Random Sampling Without Replacement

13.3.2 Simple Random Sampling Without Replacement Both the Stages

13.3.3 First-Stage Rao--Hartley--Cochran and Second-Stage Simple Random Sampling Without Replacement

13.4 FIRST-STAGE UNITS ARE SELECTED BY PPSWR SAMPLING SCHEME

13.4.1 Simple Random Sampling With Replacement

13.4.2 Raj Estimator for Multi-Stage Sampling

13.5 MODIFICATION OF VARIANCE ESTIMATORS

13.5.1 Srinath and Hidiroglou Modification

13.5.2 Arnab Modification

13.6 MORE THAN TWO-STAGE SAMPLING

13.6.1 Three-Stage Sampling

13.7 ESTIMATION OF MEAN PER UNIT

13.7.1 Simple Random Sampling Without Replacement

13.8 OPTIMUM ALLOCATION

13.8.1 Fixed Expected Cost

13.8.2 Fixed Variance

13.9 SELF -WEIGHTING DESIGN

13.10 EXERCISES

14 - Variance/Mean Square Estimation

14.1 INTRODUCTION

14.2 LINEAR UNBIASED ESTIMATORS

14.2.1 Conditions of Unbiased Estimation of Variance

14.3 NONNEGATIVE VARIANCE/MEAN SQUARE ESTIMATION

14.3.1 Examples

14.3.1.1 Horvitz-Thompson Estimator

14.3.1.2 Hansen-Hurwitz Estimator

14.3.1.3 Murthy's Estimator

14.3.1.4 Unbiased Ratio Estimator

14.3.1.5 Ordinary Ratio Estimator

14.3.1.6 Hartley-Ross Estimator

14.4 EXERCISES

15 - Nonsampling Errors

15.1 INTRODUCTION

15.2 SOURCES OF NONSAMPLING ERRORS

15.3 CONTROLLING OF NONSAMPLING ERRORS

15.4 TREATMENT OF NONRESPONSE ERROR

15.4.1 Poststratification

15.4.1.1 Hansen-Hurwitz Method

15.4.1.1.1 Optimum Value of ν and n

15.4.2 Use of Response Probabilities

15.4.2.1 Classification of Response Probabilities

15.4.3 Politz and Simmons Method

15.4.4 Imputation

15.4.4.1 Problems of Imputation

15.4.5 Multiple Imputation

15.4.6 Bayesian Imputation

15.4.6.1 Wang et al. Method

15.4.6.2 Schenker and Welsh Method

15.4.7 Subsampling Method

15.4.7.1 Arnab and Singh Method

15.4.7.1.1 Simple Random Sampling Without Replacement

15.4.7.2 Singh and Singh Method

15.5 MEASUREMENT ERROR

15.5.1 Measurement Bias and Variance

15.5.1.1 Simple Random Sampling Without Replacement

15.5.2 Interpenetrating Subsamples

15.6 EXERCISES

16 - Randomized Response Techniques

16.1 INTRODUCTION

16.2 RANDOMIZED RESPONSE TECHNIQUES FOR QUALITATIVE CHARACTERISTICS

16.2.1 Warner's Technique: the Pioneering Method

16.2.1.1 Estimation of Proportion

16.2.1.2 Comparison With Direct Response Surveys

16.2.1.3 Maximum Likelihood Estimation of Proportion

16.2.2 Greenberg et al.: Unrelated Question Method

16.2.2.1 Estimation of Proportion

16.2.3 Kuk's Model

16.2.4 Mangat and Singh Model

16.3 EXTENSION TO MORE THAN ONE CATEGORIES

16.3.1 Liu and Chow's Technique

16.3.1.1 Estimation of Proportions

16.4 RANDOMIZED RESPONSE TECHNIQUES FOR QUANTITATIVE CHARACTERISTICS

16.4.1 Eriksson's Technique

16.4.2 Arnab's Model

16.4.3 Christofides's Model

16.4.4 Eichhorn and Hayre's Model

16.4.5 Franklin's Randomized Response Technique

16.4.6 Chaudhuri's Randomized Response

16.5 GENERAL METHOD OF ESTIMATION

16.5.1 Estimation of Total and Variance

16.5.1.1 Horvitz-Thomson Estimator

16.5.1.2 Simple Random Sampling Without Replacement

16.5.1.3 Rao-Hartley-Cochran Sampling

16.5.1.4 Probability Proportional to Aggregate Size Sampling

16.5.1.5 Probability Proportional to Size With Replacement Sampling

16.5.1.6 Simple Random Sampling With Replacement

16.6 OPTIONAL RANDOMIZED RESPONSE TECHNIQUES

16.6.1 Full Optional Randomized Response Technique

16.6.1.1 Estimation of Population Total

16.6.1.2 Horvitz-Thompson Estimator Based on a Fixed Sample Size Design

16.6.1.3 Simple Random Sampling Without Replacement

16.6.1.4 Rao-Hartley-Cochran Sampling

16.6.1.5 Probability Proportional to Size With Replacement Sampling

16.6.1.6 Simple Random Sampling With Replacement

16.6.2 Partial Optional Randomized Response Technique

16.6.2.1 Gupta et al. Model

16.7 MEASURE OF PROTECTION OF PRIVACY

16.7.1 Qualitative Characteristic With ``Yes-No'' Response

16.7.1.1 Leysieffer and Warner's Measure

16.7.1.2 Lanke's Measure

16.7.1.3 Anderson's Measure

16.7.2 Quantitative Characteristics

16.8 OPTIMALITY UNDER SUPERPOPULATION MODEL

16.8.1 Product Measure Model

16.8.2 Equicorrelation Model

16.8.3 Construction of an Optimal Randomized Response Technique

16.9 EXERCISES

17 - Domain and Small Area Estimation

17.1 INTRODUCTION

17.2 DOMAIN ESTIMATION

17.2.1 Horvitz-Thomson Estimator

17.3 SMALL AREA ESTIMATION

17.3.1 Symptomatic Accounting Technique

17.3.1.1 Vital Rates Method

17.3.1.2 Composite Method

17.3.1.3 Census Component Method

17.3.1.4 Housing Unit Method

17.3.1.5 Ratio Correlation Method

17.3.1.6 Difference Correlation Method

17.3.2 Direct Estimation

17.3.3 Synthetic Estimation

17.3.4 Composite Estimation

17.3.5 Borrowing Strength From Related Areas

17.3.5.1 Synthetic Estimator

17.3.5.2 Generalized Regression Estimator

17.3.5.3 Composite Estimator

17.3.6 Use of Models

17.3.6.1 General Linear Mixed Model

17.3.6.2 Nested Error Regression Model

17.3.6.3 Area-Level Model

17.3.6.4 Fay-Herriot Model

17.3.7 Empirical Best Linear Unbiased Prediction, Empirical Bayes, and Hierarchical Bayes Methods

17.3.7.1 Empirical Best Linear Unbiased Prediction

17.3.7.1.1 Onefold Nested Error Regression Model

17.3.7.1.2 Fay-Herriot Model

17.3.7.2 Empirical Bayes Approach

17.3.7.3 Hierarchical Bayes Approach

17.4 EXERCISES

18 - Variance Estimation: Complex Survey Designs

18.1 INTRODUCTION

18.2 LINEARIZATION METHOD

18.2.1 Ratio Estimator

18.2.2 Coefficient of Variation

18.3 RANDOM GROUP METHOD

18.3.1 Simple Random Sampling With Replacement

18.3.2 Simple Random Sampling Without Replacement

18.3.3 Varying Probability Sampling

18.3.4 Multistage Sampling

18.3.5 Numerical Example

18.4 JACKKNIFE METHOD

18.4.1 Jackknife Method for an Infinite Population

18.4.1.1 Higher-Order Jackknife Estimator

18.4.1.2 Generalized Jackknife Estimator

18.4.2 Jackknife Method for a Finite Population

18.4.2.1 Probability Proportional to Size With Replacement Sampling

18.4.2.1.1 Bias of Jackknife Variance Estimator

18.4.2.2 Simple Random Sampling With Replacement

18.4.2.3 Inclusion Probability Proportional to Size or πps Sampling Design

18.4.2.3.1 Bias of Jackknife Variance Estimator

18.4.2.4 Simple Random Sampling Without Replacement

18.4.2.5 Regression Estimator

18.4.2.6 Numerical Example

18.5 BALANCED REPEATED REPLICATION METHOD

18.5.1 Stratified Sampling With nh=2

18.5.2 Methods of Variance Estimation

18.5.3 Applications

18.5.3.1 Population Ratio

18.5.3.2 Inclusion Probability Proportional to Size Sampling Scheme

18.5.4 Numerical Example

18.5.4.1 Population Mean

18.5.4.2 Population Ratio

18.5.4.3 Correlation Coefficient

18.5.5 Stratum Size nh≥2

18.5.5.1 Grouped Balanced Half-Sample Method

18.5.5.2 Subdivision of Strata

18.5.6 Stratified Multistage Sampling

18.5.7 Fay's Method

18.6 BOOTSTRAP METHOD

18.6.1 Bootstrap for Infinite Population

18.6.1.1 Bootstrap Confidence Interval

18.6.1.1.1 Percentile Method

18.6.1.1.2 Bootstrap t-Method

18.6.2 Bootstrap for Finite Population

18.6.2.1 Bootstrap for Simple Random Sampling With Replacement

18.6.2.2 Rescaling Bootstrap

18.6.2.3 Bootstrap Without Replacement Method

18.6.2.4 Mirror-Match Bootstrap

18.6.2.5 Bootstrap for Varying Probability Sampling Without Replacement

18.7 GENERALIZED VARIANCE FUNCTIONS

18.7.1 Generalized Variance Function Model

18.7.2 Justification of Generalized Variance Function Model

18.7.3 Generalized Variance Function Method for Variance Estimation

18.7.4 Applicability Generalized Variance Function Model

18.8 COMPARISON BETWEEN THE VARIANCE ESTIMATORS

18.9 EXERCISES

19 - Complex Surveys: Categorical Data Analysis

19.1 INTRODUCTION

19.2 PEARSONIAN CHI-SQUARE TEST FOR GOODNESS OF FIT

19.3 GOODNESS OF FIT FOR A GENERAL SAMPLING DESIGN

19.3.1 Wald Statistic for Goodness of Fit

19.3.1.1 Simple Random Sampling With Replacement

19.3.2 Generalized Pearsonian Chi-Square Statistic

19.3.2.1 Design Effect

19.3.3 Modifications to XG2

19.3.3.1 Use of Maximum or Minimum Eigenvalues

19.3.3.2 Rao-Scott First-Order Corrections

19.3.3.3 Rao-Scott Second-Order Corrections

19.3.3.4 Fellegi Correction

19.3.4 Simple Random Sampling Without Replacement

19.3.5 Stratified Sampling

19.3.6 Two-Stage Sampling

19.3.7 Residual Analysis

19.4 TEST OF INDEPENDENCE

19.4.1 Wald Statistic

19.4.2 Bonferroni Test

19.4.3 Modified Chi-Square

19.5 TESTS OF HOMOGENEITY

19.5.1 Wald Statistic

19.5.2 Modified Chi-Square Statistics

19.6 CHI-SQUARE TEST BASED ON SUPERPOPULATION MODEL

19.6.1 Altham's Model

19.6.1.1 A Simpler Model

19.6.2 Brier Model

19.7 CONCLUDING REMARKS

19.8 EXERCISES

20 - Complex Survey Design: Regression Analysis

20.1 INTRODUCTION

20.2 DESIGN-BASED APPROACH

20.2.1 Estimation of Variance

20.2.2 Logistic Regression

20.3 MODEL-BASED APPROACH

20.3.1 Performances of the Proposed Estimators

20.3.2 Variance Estimation

20.3.3 Multistage Sampling

20.3.4 Separate Regression for Each First-Stage Unit

20.4 CONCLUDING REMARKS

20.5 EXERCISES

21 - Ranked Set Sampling

21.1 INTRODUCTION

21.2 RANKED SET SAMPLING BY SIMPLE RANDOM SAMPLING WITH REPLACEMENT METHOD

21.2.1 A Fundamental Equality

21.2.2 Estimation of the Mean

21.2.3 Precision of the Ranked Set Sampling

21.2.4 Optimum Value of m

21.2.5 Optimum Allocation

21.2.5.1 Right-Tail Allocation Model

21.2.6 Judgment Ranking

21.2.6.1 Moment of the Judgment Order Statistic

21.2.7 Estimation of Population Variance

21.2.7.1 Efficiency of σ^〈rss〉2

21.2.8 Use of Concomitant Variables

21.2.8.1 Relative Precision of μ^reg

21.3 SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

21.3.1 Relative Precision

21.4 SIZE-BIASED PROBABILITY OF SELECTION

21.5 CONCLUDING REMARKS

21.6 EXERCISES

22 - Estimating Functions

22.1 INTRODUCTION

22.2 ESTIMATING FUNCTION AND ESTIMATING EQUATIONS

22.2.1 Optimal Properties of Estimating Functions

22.3 ESTIMATING FUNCTION FROM SUPERPOPULATION MODEL

22.3.1 Optimal and Linearly Optimal Estimating Functions

22.4 ESTIMATING FUNCTION FOR A SURVEY POPULATION

22.5 INTERVAL ESTIMATION

22.5.1 Confidence Interval for θ

22.5.1.1 Confidence Interval for Survey Parameter θN

22.5.1.2 Stratified Sampling

22.5.1.3 Confidence Intervals for Quantiles

22.6 NONRESPONSE

22.7 CONCLUDING REMARKS

22.8 EXERCISES

23 - Estimation of Distribution Functions and Quantiles

23.1 INTRODUCTION

23.2 ESTIMATION OF DISTRIBUTION FUNCTIONS

23.2.1 Design-Based Estimation

23.2.2 Design-Based Estimators Using Auxiliary Information

23.2.3 Model-Based Estimators

23.2.4 Model-Assisted Estimators

23.2.5 Nonparametric Regression Method

23.2.5.1 Nandaraya-Watson Estimator

23.2.5.2 Breidt and Opsomer Estimator

23.2.5.3 Kuo Estimator

23.2.5.4 Kuk Estimator

23.2.6 Calibration Method

23.2.7 Method of Poststratification

23.2.8 Empirical Comparison of the Estimators

23.3 ESTIMATION OF QUANTILES

23.4 ESTIMATION OF MEDIAN

23.4.1 Position Estimator and Stratification Estimator

23.4.2 Comparison of the Efficiencies

23.4.3 Further Generalization

23.4.4 Empirical Comparison

23.5 CONFIDENCE INTERVAL FOR DISTRIBUTION FUNCTION AND QUANTILES

23.6 CONCLUDING REMARKS

23.7 EXERCISES

24 - Controlled Sampling

24.1 INTRODUCTION

24.2 PIONEERING METHOD

24.3 EXPERIMENTAL DESIGN CONFIGURATIONS

24.3.1 Equal Probability Sampling Design

24.3.2 Unequal Probability Sampling Design

24.3.3 Balanced Sampling Plan Without Contiguous Units

24.4 APPLICATION OF LINEAR PROGRAMMING

24.5 NEAREST PROPORTIONAL TO SIZE DESIGN

24.6 APPLICATION OF NONLINEAR PROGRAMMING

24.7 COORDINATION OF SAMPLES OVERTIME

24.7.1 Keyfitz Method

24.7.2 Probability Proportional to Aggregate Size Sampling Scheme

24.7.2.1 Lanke Method

24.8 DISCUSSIONS

24.9 EXERCISES

25 - Empirical Likelihood Method in Survey Sampling

25.1 INTRODUCTION

25.2 SCALE LOAD APPROACH

25.3 EMPIRICAL LIKELIHOOD APPROACH

25.4 EMPIRICAL LIKELIHOOD FOR SIMPLE RANDOM SAMPLING

25.5 PSEUDO–EMPIRICAL LIKELIHOOD METHOD

25.5.1 MPEL Estimator for the Population Mean

25.5.2 MPEL Estimator for the Population Distribution Function

25.5.3 MPEL Estimator Under Linear Constraints

25.6 ASYMPTOTIC BEHAVIOR OF MPEL ESTIMATOR

25.6.1 GREG Estimator Versus MPEL Estimator

25.7 EMPIRICAL LIKELIHOOD FOR STRATIFIED SAMPLING

25.7.1 Asymptotic Properties

25.7.1.1 Variance Estimation

25.7.1.2 Jackknife Variance Estimation

25.7.2 Pseudo–empirical Likelihood Estimator

25.7.2.1 Multistage Sampling

25.8 MODEL-CALIBRATED PSEUDOEMPIRICAL LIKELIHOOD

25.8.1 Estimation of the Population Mean

25.8.2 Estimation of the Population Distribution Function

25.8.3 Model-Calibrated MPEL Estimation for Population Quadratic Parameters

25.9 PSEUDO–EMPIRICAL LIKELIHOOD TO RAKING

25.10 EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVALS

25.10.1 Simple Random Sampling

25.10.2 Complex Sampling Designs

25.10.3 Stratified Sampling

25.10.4 Confidence Interval for Distribution Function

25.11 CONCLUDING REMARKS

25.12 EXERCISES

26 - Sampling Rare and Mobile Populations

26.1 INTRODUCTION

26.2 SCREENING

26.2.1 Telephonic Interview

26.2.2 Mail Questionnaire

26.2.3 Cluster Sampling

26.2.3.1 Sudman-Waksberg Method

26.2.4 Two-Phase Sampling

26.3 DISPROPORTIONATE SAMPLING

26.4 MULTIPLICITY OR NETWORK SAMPLING

26.5 MULTIFRAME SAMPLING

26.5.1 Methods of Estimation

26.5.2 Simple Random Sampling Without Replacement

26.5.3 General Sampling Procedures

26.5.4 Horvitz-Thompson-Based Estimators

26.5.5 Concluding Remarks

26.6 SNOWBALL SAMPLING

26.7 LOCATION SAMPLING

26.8 SEQUENTIAL SAMPLING

26.9 ADAPTIVE SAMPLING

26.9.1 Unbiased Estimation of Population Mean

26.9.1.1 Use of Intersection Probabilities

26.9.1.2 Use of the Number of Intersections

26.10 CAPTURE-RECAPTURE METHOD

26.10.1 Closed Population

26.10.1.1 Peterson and Lincoln Method

26.10.1.2 Hypergeometric Model

26.10.1.3 Bailey's Binomial Model

26.10.1.4 Ratio Method

26.10.1.5 Inverse Sampling Methods

26.10.1.5.1 Without Replacement Method

26.10.1.5.2 With Replacement Method

26.10.1.6 Interval Estimation

26.10.1.7 Multiple Marking

26.10.2 Open Model

26.10.2.1 Jolly-Seber Model

26.10.2.1.1 Summary Data

26.10.2.1.2 Assumptions of the Model

26.10.2.1.3 Estimation of Parameters

26.11 EXERCISES

REFERENCES

AUTHOR INDEX

A

B

C

D

E

F

G

H

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

Y

Z

SUBJECT INDEX

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

Y

Back Cover

The users who browse this book also browse


No browse record.