Measurement and Instrumentation :Theory and Application

Publication subTitle :Theory and Application

Author: Morris   Alan S;Langari   Reza  

Publisher: Elsevier Science‎

Publication year: 2011

E-ISBN: 9780123819628

P-ISBN(Paperback): 9780123819604

P-ISBN(Hardback):  9780123819604

Subject: N3 Natural Science Research Methods

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Measurement and Instrumentation introduces undergraduate engineering students to the measurement principles and the range of sensors and instruments that are used for measuring physical variables. Based on Morris’s Measurement and Instrumentation Principles, this brand new text has been fully updated with coverage of the latest developments in such measurement technologies as smart sensors, intelligent instruments, microsensors, digital recorders and displays and interfaces. Clearly and comprehensively written, this textbook provides students with the knowledge and tools, including examples in LABVIEW, to design and build measurement systems for virtually any engineering application. The text features chapters on data acquisition and signal processing with LabVIEW from Dr. Reza Langari, Professor of Mechanical Engineering at Texas A&M University.

  • Early coverage of measurement system design provides students with a better framework for understanding the importance of studying measurement and instrumentation
  • Includes significant material on data acquisition, coverage of sampling theory and linkage to acquisition/processing software, providing students with a more modern approach to the subject matter, in line with actual data acquisition and instrumentation techniques now used in industry.
  • Extensive coverage of uncertainty (inaccuracy) aids students’ ability to determine the precision of instruments
  • Integrated use of LabVIEW e

Chapter

1.5. Summary

1.6. Problems

Chapter 2: Instrument Types and Performance Characteristics

2.1. Introduction

2.2. Review of Instrument Types

2.2.1. Active and Passive Instruments

2.2.2. Null-Type and Deflection-Type Instruments

2.2.3. Analogue and Digital Instruments

2.2.4. Indicating Instruments and Instruments With a Signal Output

2.2.5. Smart and Nonsmart Instruments

2.3. Static Characteristics of Instruments

2.3.1. Accuracy and Inaccuracy (Measurement Uncertainty)

2.3.2. Precision/Repeatability/Reproducibility

2.3.3. Tolerance

2.3.4. Range or Span

2.3.5. Linearity

2.3.6. Sensitivity of Measurement

2.3.7. Threshold

2.3.8. Resolution

2.3.9. Sensitivity to Disturbance

2.3.10. Hysteresis Effects

2.3.11. Dead Space

2.4. Dynamic Characteristics of Instruments

2.4.1. Zero-Order Instrument

2.4.2. First-Order Instrument

2.4.3. Second-Order Instrument

2.5. Necessity for Calibration

2.6. Summary

2.7. Problems

Chapter 3: Measurement Uncertainty

3.1. Introduction

3.2. Sources of Systematic Error

3.2.1. System Disturbance Due to Measurement

3.2.2. Errors Due to Environmental Inputs

3.2.3. Wear in Instrument Components

3.2.4. Connecting Leads

3.3. Reduction of Systematic Errors

3.3.1. Careful Instrument Design

3.3.2. Calibration

3.3.3. Method of Opposing Inputs

3.3.4. High-Gain Feedback

3.3.5. Signal Filtering

3.3.6. Manual Correction of Output Reading

3.3.7. Intelligent Instruments

3.4. Quantification of Systematic Errors

3.4.1. Quantification of Individual Systematic Error Components

3.4.2. Calculation of Overall Systematic Error

3.5. Sources and Treatment of Random Errors

3.6. Statistical Analysis of Measurements Subject to Random Errors

3.6.1. Mean and Median Values

3.6.2. Standard Deviation and Variance

3.6.3. Graphical Data Analysis Techniques-Frequency Distributions

3.6.4. Gaussian (Normal) Distribution

3.6.5. Standard Gaussian Tables (z Distribution)

3.6.6. Standard Error of the Mean

3.6.7. Estimation of Random Error in a Single Measurement

3.6.8. Distribution of Manufacturing Tolerances

3.6.9. Chi-Squared (chi2) Distribution

3.6.10. Goodness of Fit to a Gaussian Distribution

3.6.11. Rogue Data Points (Data Outliers)

3.6.12. Student T Distribution

3.7. Aggregation of Measurement System Errors

3.7.1. Combined Effect of Systematic and Random Errors

3.7.2. Aggregation of Errors From Separate Measurement System Components

3.7.3. Total Error when Combining Multiple Measurements

3.8. Summary

3.9. Problems

Chapter 4: Calibration of Measuring Sensors And Instruments

4.1. Introduction

4.2. Principles of Calibration

4.3. Control of Calibration Environment

4.4. Calibration Chain and Traceability

4.5. Calibration Records

4.6. Summary

4.7. Problems

Chapter 5: Data Acquisition With LabView

5.1. Introduction

5.2. Computer-Based Data Acquisition

5.2.1. Acquisition of Data

5.3. National Instruments LabView

5.3.1. Virtual Instruments

5.4. Introduction to Graphical Programming in LabView

5.4.1. Elements of the Tools Palette

5.5. Logic Operations in LabView

5.6. Loops in LabView

5.7. Case Structure in LabView

5.8. Data Acquisition Using LabView

5.9. LabView Function Generation

5.10. Summary

5.11. Problems

5.12. Appendix: Software Tools for Laboratory Data Acquisition

5.12.1. Measurement Foundry

5.12.2. DasyLab

5.12.3. iNet-iWplus

5.12.4. WinWedge

Chapter 6: Signal Processing With LabView

6.1. Introduction

6.2. Analogue Filters

6.2.1. Passive Filters

6.2.2. Active Filters Using Op-amps

6.2.3. Implementation on a Breadboard

6.2.4. Building the Circuit

6.2.5. Electronic Components

6.2.6. Op-amps in Analogue Signal Processing

6.3. Digital Filters

6.3.1. Input Averaging Filter

6.3.2. Filter With Memory

6.3.3. Example

6.3.4. LabView Implementation

6.3.5. Higher Order Digital Filters

6.4. Conclusions

6.5. Problems

6.6. Appendix

6.6.1. Simple Filter Solution

6.6.2. Matlab Solution to the Butterworth Filter Design

Chapter 7: Electrical Indicating and Test Instruments

7.1. Introduction

7.2. Digital Meters

7.2.1. Voltage-to-Time Conversion Digital Voltmeter

7.2.2. Potentiometric Digital Voltmeter

7.2.3. Dual-Slope Integration Digital Voltmeter

7.2.4. Voltage-to-Frequency Conversion Digital Voltmeter

7.2.5. Digital Multimeter

7.3. Analogue Meters

7.3.1. Moving Coil Meter

7.3.2. Moving Iron Meter

7.3.3. Clamp-on Meters

7.3.4. Analogue Multimeter

7.3.5. Measuring High-Frequency Signals With Analogue Meters

7.3.6. Calculation of Meter Outputs for Nonstandard Waveforms

7.4. Oscilloscopes

7.4.1. Analogue Oscilloscope (Cathode Ray Oscilloscope)

7.4.2. Digital Storage Oscilloscopes

7.4.3. Digital Phosphor Oscilloscope

7.4.4. Digital Sampling Oscilloscope

7.4.5. Personal Computer-Based Oscilloscope

7.5. Summary

7.6. Problems

Chapter 8: Display, Recording, and Presentation Of Measurement Data

8.1. Introduction

8.2. Display of Measurement Signals

8.2.1. Electronic Output Displays

8.2.2. Computer Monitor Displays

8.3. Recording of Measurement Data

8.3.1. Chart Recorders

8.3.2. Ink-Jet and Laser Printers

8.3.3. Other Recording Instruments

8.3.4. Digital Data Recorders

8.4. Presentation of Data

8.4.1. Tabular Data Presentation

8.4.2. Graphical Presentation of Data

8.5. Summary

8.6. Problems

Chapter 9: Variable Conversion Elements

9.1. Introduction

9.2. Bridge Circuits

9.2.1. Null-Type D.c. Bridge (Wheatstone Bridge)

9.2.2. Deflection-Type D.c. Bridge

9.2.3. Error Analysis

9.2.4. a.c. Bridges

9.2.5. Commercial Bridges

9.3. Resistance Measurement

9.3.1. d.c. Bridge Circuit

9.3.2. Voltmeter-Ammeter Method

9.3.3. Resistance-Substitution Method

9.3.4. Use of Digital Voltmeter to Measure Resistance

9.3.5. Ohmmeter

9.4. Inductance Measurement

9.5. Capacitance Measurement

9.6. Current Measurement

9.7. Frequency Measurement

9.7.1. Digital Counter/Timer

9.7.2. Phase-Locked Loop

9.7.3. Oscilloscope

9.7.4. Wien Bridge

9.8. Phase Measurement

9.8.1. Electronic Counter/Timer

9.8.2. X-Y Plotter

9.8.3. Oscilloscope

9.8.4. Phase-Sensitive Detector

9.9. Summary

9.10. Problems

Chapter 10: Measurement Signal Transmission

10.1. Introduction

10.2. Electrical Transmission

10.2.1. Transmission as Varying Voltages

10.2.2. Current Loop Transmission

10.2.3. Transmission Using an A.c. Carrier

10.3. Pneumatic Transmission

10.4. Fiber-Optic Transmission

10.4.1. Principles of Fiber Optics

10.4.2. Transmission Characteristics

10.4.3. Multiplexing Schemes

10.5. Optical Wireless Telemetry

10.6. Radiotelemetry (Radio Wireless Transmission)

10.7. Digital Transmission Protocols

10.8. Summary

10.9. Problems

Chapter 11: Intelligent Devices

11.1. Introduction

11.2. Principles of Digital Computation

11.2.1. Elements of a Computer

11.2.2. Computer Operation

11.2.3. Computer Input-Output Interface

11.2.4. Practical Considerations in Adding Computers to Measurement Systems

11.3. Intelligent Devices

11.3.1. Intelligent Instruments

11.3.2. Smart Sensors

11.3.3. Smart Transmitters

11.4. Communication With Intelligent Devices

11.4.1. Input-Output Interface

11.4.2. Parallel Data Bus

11.4.3. Local Area Networks

11.4.4. Digital Fieldbuses

11.5. Summary

11.6. Problems

Chapter 12: Measurement Reliability and Safety Systems

12.1. Introduction

12.2. Reliability

12.2.1. Principles of Reliability

12.2.2. Laws of Reliability in Complex Systems

12.2.3. Improving Measurement System Reliability

12.2.4. Software Reliability

12.3. Safety Systems

12.3.1. Introduction to Safety Systems

12.3.2. Design of a Safety System

12.4. Summary

12.5. Problems

Chapter 13: Sensor Technologies

13.1. Introduction

13.2. Capacitive Sensors

13.3. Resistive Sensors

13.4. Magnetic Sensors

13.5. Hall-Effect Sensors

13.6. Piezoelectric Transducers

13.7. Strain Gauges

13.8. Piezoresistive Sensors

13.9. Optical Sensors

13.9.1. Optical Sensors (Air Path)

13.9.2. Optical Sensors (Fiber Optic)

13.10. Ultrasonic Transducers

13.10.1. Transmission Speed

13.10.2. Directionality of Ultrasound Waves

13.10.3. Relationship Between Wavelength, Frequency, and Directionality Of Ultrasound Waves

13.10.4. Attenuation of Ultrasound Waves

13.10.5. Ultrasound as a Range Sensor

13.10.6. Effect of Noise in Ultrasonic Measurement Systems

13.10.7. Exploiting Doppler Shift in Ultrasound Transmission

13.11. Nuclear Sensors

13.12. Microsensors

13.13. Summary

13.14. Problems

Chapter 14: Temperature Measurement

14.1. Introduction

14.2. Thermoelectric Effect Sensors (Thermocouples)

14.2.1. Thermocouple Tables

14.2.2. Nonzero Reference Junction Temperature

14.2.3. Thermocouple Types

14.2.4. Thermocouple Protection

14.2.5. Thermocouple Manufacture

14.2.6. Thermopile

14.2.7. Digital Thermometer

14.2.8. Continuous Thermocouple

14.3. Varying Resistance Devices

14.3.1. Resistance Thermometers (Resistance Temperature Devices)

14.3.2. Thermistors

14.4. Semiconductor Devices

14.5. Radiation Thermometers

14.5.1. Optical Pyrometer

14.5.2. Radiation Pyrometers

14.6. Thermography (Thermal Imaging)

14.7. Thermal Expansion Methods

14.7.1. Liquid-in-Glass Thermometers

14.7.2. Bimetallic Thermometer

14.7.3. Pressure Thermometers

14.8. Quartz Thermometers

14.9. Fiber-Optic Temperature Sensors

14.10. Color Indicators

14.11. Change of State of Materials

14.12. Intelligent Temperature-Measuring Instruments

14.13. Choice Between Temperature Transducers

14.14. Calibration of Temperature Transducers

14.14.1. Reference Instruments and Special Calibration Equipment

14.14.2. Calculating Frequency of Calibration Checks

14.14.3. Procedures for Calibration

14.15. Summary

14.16. Problems

Chapter 15: Pressure Measurement

15.1. Introduction

15.2. Diaphragms

15.3. Capacitive Pressure Sensor

15.4. Fiber-Optic Pressure Sensors

15.5. Bellows

15.6. Bourdon Tube

15.7. Manometers

15.7.1. U-Tube Manometer

15.7.2. Well-Type Manometer (Cistern Manometer)

15.7.3. Inclined Manometer (Draft Gauge)

15.8. Resonant Wire Devices

15.9. Electronic Pressure Gauges

15.10. Special Measurement Devices for Low Pressures

15.10.1. Thermocouple Gauge

15.10.2. Thermistor Gauge

15.10.3. Pirani Gauge

15.10.4. McLeod Gauge

15.10.5. Ionization Gauge

15.11. High-Pressure Measurement (Greater than 7000 Bar)

15.12. Intelligent Pressure Transducers

15.13. Differential Pressure-Measuring Devices

15.14. Selection of Pressure Sensors

15.15. Calibration of Pressure Sensors

15.15.1. Reference Calibration Instruments

15.15.2. Calculating Frequency of Calibration Checks

15.15.3. Procedures for Calibration

15.16. Summary

15.17. Problems

Chapter 16: Flow Measurement

16.1. Introduction

16.2. Mass Flow Rate

16.2.1. Conveyor-Based Methods

16.2.2. Coriolis Flowmeter

16.2.3. Thermal Mass Flow Measurement

16.2.4. Joint Measurement of Volume Flow Rate and Fluid Density

16.3. Volume Flow Rate

16.3.1. Differential Pressure (Obstruction-Type) Meters

16.3.2. Variable Area Flowmeters (Rotameters)

16.3.3. Positive Displacement Flowmeters

16.3.4. Turbine Meters

16.3.5. Electromagnetic Flowmeters

16.3.6. Vortex-Shedding Flowmeters

16.3.7. Ultrasonic Flowmeters

16.3.8. Other Types of Flowmeters for Measuring Volume Flow Rate

16.3.9. Open Channel Flowmeters

16.4. Intelligent Flowmeters

16.5. Choice Between Flowmeters for Particular Applications

16.6. Calibration of Flowmeters

16.6.1. Calibration Equipment and Procedures for Mass Flow-Measuring Instruments

16.6.2. Calibration Equipment and Procedures for Instruments Measuring Volume Flow Rate of Liquids

16.6.3. Calibration Equipment and Procedures for Instruments Measuring Volume Flow Rate of Gases

16.6.4. Reference Standards

16.7. Summary

16.8. Problems

Chapter 17: Level Measurement

17.1. Introduction

17.2. Dipsticks

17.3. Float Systems

17.4. Pressure-Measuring Devices (Hydrostatic Systems)

17.5. Capacitive Devices

17.6. Ultrasonic Level Gauge

17.7. Radar (Microwave) Sensors

17.8. Nucleonic (or Radiometric) Sensors

17.9. Other Techniques

17.9.1. Vibrating Level Sensor

17.9.2. Laser Methods

17.10. Intelligent Level-Measuring Instruments

17.11. Choice Between Different Level Sensors

17.12. Calibration of Level Sensors

17.13. Summary

17.14. Problems

Chapter 18: Mass, Force, and Torque Measurement

18.1. Introduction

18.2. Mass (Weight) Measurement

18.2.1. Electronic Load Cell (Electronic Balance)

18.2.2. Pneumatic and Hydraulic Load Cells

18.2.3. Intelligent Load Cells

18.2.4. Mass Balance (Weighing) Instruments

18.2.5. Spring Balance

18.3. Force Measurement

18.3.1. Use of Accelerometers

18.3.2. Vibrating Wire Sensor

18.3.3. Use of Load Cells

18.4. Torque Measurement

18.4.1. Measurement of Induced Strain

18.4.2. Optical Torque Measurement

18.4.3. Reaction Forces in Shaft Bearings

18.4.4. Prony Brake

18.5. Calibration of Mass, Force, and Torque Measuring Sensors

18.5.1. Mass Calibration

18.5.2. Force Sensor Calibration

18.5.3. Calibration of Torque Measuring Systems

18.6. Summary

18.7. Problems

Chapter 19: Translational Motion, Vibration, And Shock Measurement

19.1. Introduction

19.2. Displacement

19.2.1. Resistive Potentiometer

19.2.2. Linear Variable Differential Transformer (Lvdt)

19.2.3. Variable Capacitance Transducers

19.2.4. Variable Inductance Transducers

19.2.5. Strain Gauges

19.2.6. Piezoelectric Transducers

19.2.7. Nozzle Flapper

19.2.8. Other Methods of Measuring Small/Medium-Sized Displacements

19.2.9. Measurement of Large Displacements (Range Sensors)

19.2.10. Proximity Sensors

19.2.11. Choosing Translational Measurement Transducers

19.2.12. Calibration of Translational Displacement Measurement Transducers

19.3. Velocity

19.3.1. Differentiation of Displacement Measurements

19.3.2. Integration of Output of an Accelerometer

19.3.3. Conversion to Rotational Velocity

19.3.4. Calibration of Velocity Measurement Systems

19.4. Acceleration

19.4.1. Selection of Accelerometers

19.4.2. Calibration of Accelerometers

19.5. Vibration

19.5.1. Nature of Vibration

19.5.2. Vibration Measurement

19.5.3. Calibration of Vibration Sensors

19.6. Shock

19.6.1. Calibration of Shock Sensors

19.7. Summary

19.8. Problems

Chapter 20: Rotational Motion Transducers

20.1. Introduction

20.2. Rotational Displacement

20.2.1. Circular and Helical Potentiometers

20.2.2. Rotational Differential Transformer

20.2.3. Incremental Shaft Encoders

20.2.4. Coded Disc Shaft Encoders

20.2.5. The Resolver

20.2.6. The Synchro

20.2.7. The Induction Potentiometer

20.2.8. The Rotary Inductosyn

20.2.9. Gyroscopes

20.2.10. Choice Between Rotational Displacement Transducers

20.2.11. Calibration of Rotational Displacement Transducers

20.3. Rotational Velocity

20.3.1. Digital Tachometers

20.3.2. Stroboscopic Methods

20.3.3. Analogue Tachometers

20.3.4. The Rate Gyroscope

20.3.5. Fiber-Optic Gyroscope

20.3.6. Differentiation of Angular Displacement Measurements

20.3.7. Integration of Output From an Accelerometer

20.3.8. Choice Between Rotational Velocity Transducers

20.3.9. Calibration of Rotational Velocity Transducers

20.4. Rotational Acceleration

20.4.1. Calibration of Rotational Accelerometers

20.5. Summary

20.6. Problems

Appendix 1: Imperial–Metric–SI Conversion Tables

Length

Area

Second Moment of Area

Volume

Density

Mass

Force

Torque (Moment of Force)

Inertia

Pressure

Additional Conversion Factors

Energy, Work, Heat

Additional Conversion Factors

Power

Velocity

Acceleration

Mass Flow Rate

Volume Flow Rate

Specific Energy (Heat Per Unit Volume)

Dynamic Viscosity

Kinematic Viscosity

Appendix 2: Theacutevenin's Theorem

Reference

Appendix 3: Thermocouple Tables

Index

The users who browse this book also browse