Polar locally convex topologies and Attouch-Wets convergence

Publisher: Cambridge University Press

E-ISSN: 1755-1633|46|1|33-46

ISSN: 0004-9727

Source: Bulletin of the Australian Mathematical Society, Vol.46, Iss.1, 1992-08, pp. : 33-46

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Let X be a Hausdorff locally convex space. We show that convergence of a net of continuous linear functionals on X with respect to a given polar topology on its continuous dual X′ can be explained in terms of the convergence of the corresponding net of its graphs in X × R, and the corresponding net of level sets at a fixed height in X, with respect to a natural generalisation of Attouch-Wets convergence in normable spaces.