ON $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\gamma $ -VECTORS AND THE DERIVATIVES OF THE TANGENT AND SECANT FUNCTIONS

Publisher: Cambridge University Press

E-ISSN: 1755-1633|90|2|177-185

ISSN: 0004-9727

Source: Bulletin of the Australian Mathematical Society, Vol.90, Iss.2, 2014-10, pp. : 177-185

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Related content