Protein and arginine requirements for maintenance and nitrogen gain in four teleosts
Publisher:
Cambridge University Press
E-ISSN:
1475-2662|87|5|459-469
ISSN:
0007-1145
Source:
British Journal of Nutrition,
Vol.87,
Iss.5, 2002-05,
pp. : 459-469
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Previous
Menu
Next
Abstract
Besides being an indispensable amino acid for protein synthesis, arginine (Arg) is also involved in a number of other physiological functions. Available data on the quantitative requirement for Arg in different teleosts appear to show much variability. So far, there are very limited data on the maintenance requirements of indispensable amino acids (IAA) in fish. In the present study, we compared N and Arg requirements for maintenance and growth of four finfish species: rainbow trout (Oncorhynchus mykiss), turbot (Psetta maxima), gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Groups of fish having an initial body weight close to 5–7 g were fed semi-purified diets containing graded levels of N (0 to 8 % DM) and Arg (0 to 3 % DM) over 4 to 6 weeks. For each species, N and Arg requirements for maintenance and for growth were calculated regressing daily N gain against daily N or Arg intakes. N requirement for maintenance was estimated to be 37·8, 127·3, 84·7 and 45·1 mg/kg metabolic body weight per d and 2·3, 2·2, 2·6 and 2·5 g for 1 g N accretion, in rainbow trout, turbot, gilthead seabream and European seabass respectively. The four species studied appear to have very low or no dietary Arg requirements for maintenance. Arg requirement for g N accretion was calculated to be 0·86 g in rainbow trout and between 1·04–1·11 g in the three marine species. Turbot required more N for maintenance than the other three species, possibly explaining its reputedly high overall dietary protein requirement. Data suggest a small but sufficient endogenous Arg synthesis to maintain whole body N balance and differences between freshwater and marine species as regards Arg requirement. It is worth verifying this tendency with other IAA.