Chapter
On parameters for the group 𝑆𝑂(2𝑛)
2. Statement of the local theorem
3. The problem of uniqueness
5. Proof of the local theorem
Piatetski-Shapiro’s Work on Converse Theorems
1. 𝐿-functions for 𝐺𝐿_{𝑛}×𝐺𝐿_{𝑚} with 𝑚<𝑛
3. Limiting the rank of the twists
4. Limiting the ramification of the twists
5. Speculation on 𝐺𝐿₁ twists
6. Converse theorems with poles
7. Local converse theorems
A 𝑝-adic integral for the reciprocal of 𝐿-functions
1. Introduction and Motivation
2. Mazur’s measure and its real analytic interpretation
3. Fourier coefficients of classical Eisenstein series
Harmonic analysis on symmetric spaces as complex analysis
1. Horospherical reduction of complex symmetric spaces (geometrical picture)
2. Horospherical reduction of complex symmetric spaces (analytic construction of intertwining operators)
3. Dual horospherical Cauchy transform
4. Cauchy formula on complex symmetric spaces
5. Horospherical duality for real symmetric spaces. Compact spaces
6. Horospherical duality for complex crowns of symmetric spaces
7. Tube Stein manifolds on causal symmetric spaces
Testing rationality of coherent cohomology of Shimura varieties
1. Restrictions of discrete series representations and global consequences
2. Restrictions of minimal types
3. Coherent cohomology of unitary group Shimura varieties
4. Gross-Prasad periods as cup products
Hecke fields of Hilbert modular analytic families
1. Hilbert Modular Forms of 𝔭-power level
3. Theorems and conjectures
5. A Frobenius eigenvalue formula
6. Proof of the horizontal theorem: \thmref{Hthm}
Structure of holomorphic unitary representations: the case of 𝐔_{2,2}
3. \Gln harmonics and invariants on \pvnkl
4. Special highest weight vectors in \calh⊗𝐽
9. Application to holomorphic unitary representations
Mellin Transform of Whittaker functions
Automorphic Integral Transforms for Classical Groups I: Endoscopy Correspondences
2. Arthur Parametrization of Discrete Spectrum
3. Endoscopy Structures for Classical Groups
4. Fourier Coefficients and Nilpotent Orbits
5. Constructions of the Automorphic Kernel Functions
6. Automorphic Descents and Automorphic Forms of Simple Type
7. Theta Correspondence and (𝜒,𝑏)-Theory
8. Endoscopy Correspondence and (𝜏,𝑏)-Theory
An inductive formula for 𝜖-factors
2. Whittaker Models and Functional Equations
3. Construction of Whittaker Functions after Paskunas-Stevens
4. An inductive formula of 𝜖-factors
5. Proof of Theorem 4.4.3
On a new functional equation for local integrals
1. Introduction and statement of main result
3. Model transition –first case
4. Model transition –second case
5. The functional equation
Appendix A. Convergence results
Appendix B. More functional equations
Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands
2. Notations et propriétés générales
3. Le cas des représentations cuspidales
4. Support cuspidal étendu et ensemble de blocs de Jordan
5. Morphisme dans le L-groupe
6. Morphisme de Langlands des paquets stables de séries discrètes
7. 𝑅-groupe et cardinal des paquets stables de représentations tempérées
On a certain sum of automorphic 𝐿-functions
1. Automorphic 𝐿-functions as a trace
2. Geometric construction of 𝜓
3. A certain sum of 𝐿-functions
Analytic constructions of 𝑝-adic 𝐿-functions and Eisenstein series
1. Complex and 𝑝-adic 𝐿-functions
2. 𝑝-adic meromorphic continuation of the Siegel-Eisenstein series
3. Pseudomeasures and their Mellin transform
4. Application to Minkowski-Siegel Mass constants
5. Link to Shahidi’s method for SL(2) and regular prime 𝑝
6. Doubling method and Ikeda’s constructions
Appendix A. Appendix. On 𝑝-adic 𝐿-functions for 𝐺𝑆𝑝(4)
On stability of root numbers
2. Towards a general stability
3. Stability and equality of factors in the case 𝛾(𝑠,𝜋,Λ²,𝜓_{𝐹})
CAP forms, Eisenstein series, and some arithmetic applications
5. Eisenstein series on unitary groups
Automorphic descent: an outgrowth from Piatetski-Shapiro’s vision
2. Rankin-Selberg integrals
3. Poles of 𝐿-functions and automorphic descent
4. On CAP representations of \Sp_{4𝑚}(\BA)
5. On CAP representations of split even orthogonal groups
On the singularities of branch curves of 𝐾3 surfaces and applications
2. Adjoint curves, Branch curves, 𝐾3 surfaces
3. Zariski pairs and 𝐾3 surfaces