Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces

Author: Winkel Andreas   Dempwolf Wibke   Gellermann Eva   Sluszniak Magdalena   Grade Sebastian   Heuer Wieland   Eisenburger Michael   Menzel Henning   Stiesch Meike  

Publisher: MDPI

E-ISSN: 1422-0067|16|2|4327-4342

ISSN: 1422-0067

Source: International Journal of Molecular Sciences, Vol.16, Iss.2, 2015-02, pp. : 4327-4342

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications.

Related content