Author: Huang Nantian Zhang Shuxin Cai Guowei Xu Dianguo
Publisher: MDPI
E-ISSN: 1996-1073|8|1|549-572
ISSN: 1996-1073
Source: Energies, Vol.8, Iss.1, 2015-01, pp. : 549-572
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
In a microgrid, the distributed generators (DG) can power the user loads directly. As a result, power quality (PQ) events are more likely to affect the users. This paper proposes a Multiresolution Generalized S-transform (MGST) approach to improve the ability of analyzing and monitoring the power quality in a microgrid. Firstly, the time-frequency distribution characteristics of different types of disturbances are analyzed. Based on the characteristics, the frequency domain is segmented into three frequency areas. After that, the width factor of the window function in the S-transform is set in different frequency areas. MGST has different time-frequency resolution in each frequency area to satisfy the recognition requirements of different disturbances in each frequency area. Then, a rule-based decision tree classifier is designed. In addition, particle swarm optimization (PSO) is applied to extract the applicable features. Finally, the proposed method is compared with some others. The simulation experiments show that the new approach has better accuracy and noise immunity.
Related content
Combined Power Quality Disturbances Recognition Using Wavelet Packet Entropies and S-Transform
By Liu Zhigang Cui Yan Li Wenhui
Entropy, Vol. 17, Iss. 8, 2015-08 ,pp. :
Wind Power Prediction Considering Nonlinear Atmospheric Disturbances
By Zhang Yagang Yang Jingyun Wang Kangcheng Wang Zengping
Energies, Vol. 8, Iss. 1, 2015-01 ,pp. :