Effects of C/N ratio and periphyton substrates on pond ecology and production performance in giant freshwater prawn Macrobrachium rosenbergii (De Man, 1879) and tilapia Oreochromis niloticus (Linnaeus, 1758) polyculture system

Publisher: John Wiley & Sons Inc

E-ISSN: 1365-2109|46|5|1139-1155

ISSN: 1355-557x

Source: AQUACULTURE RESEARCH, Vol.46, Iss.5, 2015-05, pp. : 1139-1155

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

AbstractThe production performances of giant freshwater prawn Macrobrachium rosenbergii and Nile tilapia Oreochromis niloticus in C/N‐controlled periphyton‐based polyculture systems were evaluated in triplicate. Three different management practices were compared: the traditional practice without addition of periphyton substrates and carbohydrate (Control), addition of maize flour to maintain a carbon: nitrogen rate of 20:1 (treatment CN) and addition of both maize flour and periphyton substrates (treatment CN+P). This experiment used a pre‐optimized stocking density of tilapia and freshwater prawn by Asaduzzaman et al. Aquaculture [286 (2009) 72]. All ponds were stocked with prawn (3 m2) and monosex Nile tilapia (1 m−2). Bamboo side shoots were posted vertically into the pond bottoms as periphyton substrate covering an additional area of 171 m2 for periphyton development. A locally formulated and prepared feed containing 17% crude protein with C/N ratio close to 15:1 was applied twice daily in all ponds considering the body weight of freshwater prawn only. Water quality parameters, except total alkalinity did not vary significantly (P > 0.05) among treatments. Both, organic matter and total heterotrophic bacterial loads (THB) in the sediment were significantly (P < 0.05) higher in treatment CN+P followed by treatment CN and control. Periphyton biomass in terms of dry matter and chlorophyll a values constantly decreased during the culture period. Substrates contributed 66% and 102% higher net yield of freshwater prawn than CN and control treatment respectively.