The production of nitric oxide by marine ammonia‐oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger

Publisher: John Wiley & Sons Inc

E-ISSN: 1462-2920|17|7|2261-2274

ISSN: 1462-2912

Source: ENVIRONMENTAL MICROBIOLOGY, Vol.17, Iss.7, 2015-07, pp. : 2261-2274

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

SummaryNitrification is a critical process for the balance of reduced and oxidized nitrogen pools in nature, linking mineralization to the nitrogen loss processes of denitrification and anammox. Recent studies indicate a significant contribution of ammonia‐oxidizing archaea (AOA) to nitrification. However, quantification of the relative contributions of AOA and ammonia‐oxidizing bacteria (AOB) to in situ ammonia oxidation remains challenging. We show here the production of nitric oxide (NO) by Nitrosopumilus maritimus SCM1. Activity of SCM1 was always associated with the release of NO with quasi‐steady state concentrations between 0.05 and 0.08 μM. NO production and metabolic activity were inhibited by the nitrogen free radical scavenger 2‐phenyl‐4,4,5,5,‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (PTIO). Comparison of marine and terrestrial AOB strains with SCM1 and the recently isolated marine AOA strain HCA1 demonstrated a differential sensitivity of AOB and AOA to PTIO and allylthiourea (ATU). Similar to the investigated AOA strains, bulk water column nitrification at coastal and open ocean sites with sub‐micromolar ammonia/ammonium concentrations was inhibited by PTIO and insensitive to ATU. These experiments support predictions from kinetic, molecular and biogeochemical studies, indicating that marine nitrification at low ammonia/ammonium concentrations is largely driven by archaea and suggest an important role of NO in the archaeal metabolism.