Complexity analysis of Klein-Gordon single-particle systems

Author: Manzano D.   López-Rosa S.   Dehesa J. S.  

Publisher: Edp Sciences

E-ISSN: 1286-4854|90|4|48001-48001

ISSN: 0295-5075

Source: EPL (EUROPHYSICS LETTERS), Vol.90, Iss.4, 2010-06, pp. : 48001-48001

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The Fisher-Shannon complexity is used to quantitatively estimate the contribution of relativistic effects to the internal disorder of Klein-Gordon single-particle Coulomb systems which is manifest in the rich variety of three-dimensional geometries of its corresponding quantum-mechanical probability density. It is observed that, contrary to the non-relativistic case, the Fisher-Shannon complexity of these relativistic systems does depend on the potential strength (nuclear charge). This is numerically illustrated for pionic atoms. Moreover, its variation with the quantum numbers (n, l, m) is analysed in various ground and excited states. It is found that the relativistic effects enhance when n and/or l are decreasing.