Chapter
Chapter 1: Parallel direct solver for finite element modeling of manufacturing processes
1.2. Brief review of standard gauss elimination
1.2.1. Skyline matrix storage
1.2.2.1. Factorization of the system matrix and reduction of the right-hand side vector
1.2.2.2. Division of right-hand side vector by system matrix diagonals
1.2.2.3. Backward substitution
1.3. Structure of the parallel direct solver
1.3.3.1. Reduction of off-diagonal terms, diagonal term, and right-hand side vector (case: jh>2)
1.3.3.2. Reduction of diagonal term and right-hand side vector (case: jh=2)
1.3.4. Utilization as preconditioner of iterative solvers
1.4. Test cases and evaluation parameters
1.4.1. Benchmark test case
1.4.2. Resistance welding test case
1.4.3. Evaluation parameters for parallelization
1.5. Results and discussion
1.5.1. Solution time of different solvers
1.5.2. Accuracy of direct and iterative solvers
1.5.3. Performance of the parallel direct solver
1.5.4. Performance of the parallel direct solver in resistance welding
Chapter 2: Optimal inspection/actuator placement for robust dimensional compensation in multistage manufacturing processes
2.2. State-space approach for modeling multistage assembly processes
2.2.2. System-level model
2.3. Feed-forward predictive control
2.4. Optimal inspection/actuator placement for feed-forward control
2.4.1. Step 1: Optimal placement of actuators
2.4.2. Step 2: Optimal placement of inspection stations
Derivation of matrices Γi,Ψi, and Ωi
Derivation of the unconstrained optimal control action
Derivation of the constrained optimal control action
Derivation of final state after control implementation
Chapter 3: Numerical optimization strategies for springback compensation in sheet metal forming
3.2. Springback compensation strategies
3.3.1. Metamodeling optimization: Response surface methodology
3.3.1.1. First-order model: MLR
3.3.1.2. Second-order model: Polynomial regression (P.2)
3.3.1.3. Universal kriging (U.K.)
3.3.2. Finite element model updating
3.4. Evaluation strategies
3.4.1. Cost function formulation
3.4.3. Experimental analysis
3.5. Optimization algorithms
3.5.1. Generalized reduced gradient
3.5.2. Direct search algorithm
3.5.3. Least-squares gradient-based algorithm
3.6. Parameterization strategies
3.8. Results and discussion
3.8.1. Sensitivity analysis
3.8.2. Modeling strategies and evaluation
3.8.2.2. FEMU versus metamodels
Chapter 4: Finite element modeling of hot rolling: Steady- and unsteady-state analyses
4.1.2. Finite element method
4.1.3. FEA of hot rolling process
4.2. Thermomechanical analysis of hot rolling: An overview
4.3. Work-roll and workpiece interface behavior
4.3.1. Interfacial heat transfer coefficient
4.3.2. Friction coefficient
4.4. Constitutive equation for material model
4.6. Different approaches in FEM
4.6.1. Lagrangian approach
4.6.3. Arbitrary Lagrangian-Eulerian (ALE) approach
4.8. Steady- and unsteady-state analyses of hot rolling
4.8.1.1. Steady-state analysis
4.8.1.2. Unsteady-state analysis
4.8.2.1. Steady-state analysis
4.8.2.2. Unsteady-state analysis
4.8.4. Boundary conditions
4.8.4.1. Thermal boundary
4.8.4.2. Mechanical boundary
4.8.5. Governing equation
4.8.5.1. Equilibrium equations
4.8.5.2. Constitutive equation
4.8.6.1. Lagrangian formulation
4.8.7. Constitutive equation for material model
4.8.8. Finite element formulation
4.8.8.1. Deformation analysis
4.8.8.2. Thermal analysis
4.8.10. Computing environment
4.8.11. Mesh sensitivity study
4.8.12. Temperature distribution
4.8.13. Stress and strain distributions
4.8.14. Rolling load and rolling torque
Chapter 5: Numerical modeling methodologies for friction stir welding process
5.2. Modeling of FSW: Requirement and complexities
5.3. General steps for modeling a process
5.3.1. Complexity level and analysis type
5.3.2. Geometric modeling and assembly
5.3.3. Material properties and constitutive equation
5.3.3.1. Jonson-Cook material model
5.3.3.2. Sheppard and Wright model
5.3.4. Contact interaction
5.3.4.1. Mechanical interactions
5.3.4.2. Thermal interaction
5.3.5. Boundary conditions
5.3.7. Simulation control and solver
5.3.7.1. Lagrangian analysis
5.3.7.2. Eulerian analysis
5.3.7.3. Arbitrary Lagrangian-Eulerian analysis
5.3.7.4. Coupled Eulerian-Lagrangian analysis
5.3.8. Capabilities of software
5.4. Modeling of FSW with Lagrangian analysis
5.4.1. Geometric modeling and material model
5.4.2.1. Mesh refinement study
5.4.2.2. Remeshing technique
5.4.3. Contact interaction
5.4.4. Boundary conditions and assumptions for the model
5.4.5. Governing equation
5.4.6. Solvers and iterative method
5.4.7. Results and discussion
5.4.7.1. Temperature and plastic strain distribution
5.4.7.2. Evolution of force and torque during FSW
5.5. Modeling of FSW with Eulerian analysis
5.5.1. Geometric modeling and boundary condition
5.5.3. Governing equation
5.5.5. Mesh generation and solver
5.5.6. Results and discussion
5.6. Modeling of FSW with coupled Eulerian-Lagrangian (CEL) analysis
5.6.1. Geometric modeling and material model
5.6.2.1. Mesh refinement study
5.6.3. Contact interaction
5.6.4. Boundary conditions
5.6.5. Governing equations
5.6.6. Results and discussion
5.7. Comparison of modeling methods
Chapter 6: Modeling of hard machining
6.1. Introduction to hard machining
6.1.3. Other hard machining processes
6.1.4. Phenomena occurring during hard machining processes
6.2. Numerical modeling of hard machining
6.2.2. Thermomechanical models
6.2.3. Thermomechanical models with flow stress incorporating initial hardness
6.2.4. Thermomechanical models with microstructure-related prediction capabilities
6.3. Soft computing and statistical methods modeling of hard machining
6.3.1. Artificial neural networks
6.3.2. Fuzzy logic models
6.3.3. Response surface methodology
Chapter 7: Multiresponse optimization in wire electric discharge machining (WEDM) of HCHCr steel by integrating response ...
7.3. Response surface methodology
7.4. Results and discussion
7.4.1. Analysis of surface roughness (Ra)
7.4.2. Analysis of material removal rate (MRR)
7.4.3. Analysis of tool wear rate (TWR)
7.4.4. X-ray diffraction analysis
7.4.5. Machined surface topography and EDX analysis
7.5. Differential evolution (DE) optimization
7.5.2. Development of DE optimization for WEDM characteristics