Neutron Scattering – Applications in Biology, Chemistry, and Materials Science ( Volume 49 )

Publication series :Volume 49

Author: Fernandez-Alonso   Felix;Price   David L  

Publisher: Elsevier Science‎

Publication year: 2017

E-ISBN: 9780128092309

P-ISBN(Paperback): 9780128053249

Subject: O571.5 neutron physics

Keyword: 物理学,原子核物理学、高能物理学

Language: ENG

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Description

Neutron Scattering: Applications in Chemistry, Materials Science and Biology, Volume 49, provides an in-depth overview of the applications of neutron scattering in the fields of physics, materials science, chemistry, biology, the earth sciences, and engineering.

The book describes the tremendous advances in instrumental, experimental, and computational techniques over the past quarter-century. Examples include the coming-of-age of neutron reflectivity and spin-echo spectroscopy, the advent of brighter accelerator-based neutron facilities and associated techniques in the United States and Japan over the past decade, and current efforts in Europe to develop long-pulse, ultra-intense spallation neutron sources.

It acts as a complement to two earlier volumes in the Experimental Methods in the Physical Science series, Neutron Scattering: Fundamentals(Elsevier 2013) and Neutron Scattering: Magnetic and Quantum Phenomena (Elsevier 2015).

As a whole, the set enables researchers to identify aspects of their work where neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required, write a successful proposal for one of the major facilities around the globe, and perform the experiments under the guidance of the appropriate instrument scientist.

  • Completes a three-volume set, providing extensive coverage on emerging and highly topical applications of neutron scattering<

Chapter

1.2.2. Neutron Fiber Diffraction

1.3. Small-Angle Neutron Scattering (SANS)

1.3.1. SANS Instrumentation

1.3.1.1. Currently Available Instruments

1.3.1.2. Future Instruments

1.3.2. Sample Preparation

1.3.3. Data Processing and Analysis

1.3.3.1. Model Independent Data Analysis

1.3.3.2. Geometric Modeling

1.3.3.3. Shape Reconstruction

1.3.3.4. Molecular Dynamics Simulations and Conformational Searches

1.4. Neutron Reflectometry

1.4.1. Specular and Off-Specular Reflection

1.4.2. Grazing-Incidence SANS (GISANS)

1.4.3. Instruments

1.4.4. Experimental Considerations

1.4.4.1. Resolution

1.4.4.2. Sample Preparation and Sample Environments

1.4.4.3. Contrast Variation

1.4.5. Data Analysis and Refinement

1.5. Membrane Diffraction

1.5.1. Instruments, Data Collection, and Analysis

1.5.2. Experimental Considerations

1.6. Deuterium Labeling for Biological Structure Determination

1.6.1. Protein Deuteration

1.6.2. Biopolymer Deuteration

1.6.3. Biomembrane and Small Molecule Deuteration

1.6.4. Current and Future Deuteration Facilities

1.6.4.1. D-Lab, ILL-EMBL, Grenoble (France)

1.6.4.2. Biodeuteration Lab (BDL), Oak Ridge National Laboratory, Oak Ridge TN (USA)

1.6.4.3. National Deuteration Facility, ANSTO, Sydney (Australia)

1.6.4.4. STFC Deuteration Facility, ISIS Neutron and Muon Facility, UK

1.6.4.5. Deuteration and Macromolecular Crystallization Platform, ESS, Lund (Sweden)

1.7. Scientific Highlights

1.7.1. Neutron Protein Crystallography

1.7.1.1. Ultra-High Resolution Neutron Studies of Crambin

1.7.1.2. Dynamic and Static Structural Studies of Amino Acid Protonation

1.7.1.3. Neutron Studies for Drug Design: HIV Protease in Complex With Amprenavir

1.7.1.4. Neutron Studies of an Engineered Photo-Switching Chromoprotein, Dathail

1.7.1.5. Cytochrome c Peroxidase

1.7.1.6. Urate Oxidase

1.7.2. Fibre Biomaterials and Structural Biopolymers

1.7.3. Protein Solution Structures

1.7.4. Membrane Structures and Proteins in Membranes

1.7.5. Biomedical Applications and Biomaterials

1.8. Future Perspectives

References

Chapter 2: Dynamics of Biological Systems

2.1. Introduction

2.2. Fundamental Aspects and Overview

2.2.1. Neutron Spectroscopy Fundamentals to Study Biological Systems

2.2.2. Disambiguation of Symbols

2.2.3. Collective and Self-Correlation Functions

2.2.4. Observable Quantities

2.2.5. Past and Present Topics in the Dynamics of Biological Systems

2.3. Concepts of Diffusion

2.3.1. Diffusion Fundamentals

2.3.2. Diffusion in Colloidal Suspensions

2.3.3. Diffusion in Confined Geometries

2.3.4. Fractional Generalization of the Diffusion Equation

2.4. Macromolecules in Aqueous Solutions

2.4.1. Center-of-Mass Diffusion

2.4.2. Internal Molecular Motions

2.5. Numerical Methods: Data Analysis

2.5.1. Reducing and Fitting Spectra

2.5.2. Modeling of the Solvent Water Contribution

2.5.3. Separation of the Rotational and Translational Diffusions

2.5.4. Molecular Dynamics Simulations

2.6. Spectrometers to Study Biological Dynamics

2.6.1. Types of Spectrometers for Biological Dynamics

2.6.2. Types of Measurements

2.6.3. Recent Advances in Neutron Optics

2.6.4. Practical Aspects of Experiments on Biological Samples

2.7. Neutron Spectroscopy in the Context of Complementary Methods

2.7.1. Dynamic Light Scattering (Visible and X-Ray Photons) and Other Photon Methods

2.7.2. Nuclear Magnetic Resonance

2.7.3. Fluorescence Correlation Spectroscopy

2.8. Applications

2.8.1. Proteins as Hydrated Powders

2.8.2. Proteins in Solution, Crowding, and Cluster Formation

2.8.3. Membrane Vesicles

2.8.4. Planar Lipid Membranes

2.8.5. Biological Fibers

2.8.6. Other Systems

2.9. Future Perspectives

References

Chapter 3: The Structure of Water and Aqueous Systems

3.1. Introduction

3.1.1. Water Controversies

3.1.1.1. A "Theory" of Water?

3.1.1.2. Icebergs in Water

3.1.1.3. Water Chains and Rings

3.1.2. Water: The Role of Neutron Scattering

3.1.2.1. The Total Neutron Scattering Cross Section

3.1.2.2. First Order Difference Method

3.1.2.3. Second Order Difference Method

3.1.2.4. Inelastic and Quasielastic Scattering From Water

3.1.3. Scope of This Chapter: What Is Included and What Is Not Included

3.2. The Structure of a Liquid and How It Is Measured

3.2.1. The Structure of a Liquid

3.2.2. The Molecular Pair Correlation Function

3.2.3. The Neutron Total Scattering Experiment

3.2.3.1. Impact of Inelastic Scattering and How It Can Be Corrected

3.2.3.2. Fixed Wavevector Versus Time-of-Flight Options

3.2.3.3. Samples That Are Required or Desirable

3.2.3.4. Corrections That Are Needed to the Data

3.2.3.5. Comparison With Total X-Ray Scattering

3.2.4. How the Scattering Data Are Interpreted

3.2.4.1. Dealing With Underdetermined Scattering Matrices

3.2.4.2. Increasing Importance of X-Ray Scattering Data

3.2.4.3. When Is a Fit a Fit?

3.3. Pure Water Substance

3.3.1. A Case Study: Ambient Water

3.3.2. Beyond the Site-Site Radial Distribution Functions

3.3.2.1. Triangle Distribution Functions

3.3.2.2. The Spatial Density Function

3.3.2.3. Orientational Correlations

3.3.3. Water Structure: Effect of Temperature and Pressure

3.3.3.1. Effect of Temperature at Ambient Pressure

3.3.3.2. Effect of Increased Pressure

3.3.3.3. Spatial Structure of Ice Ih and the Amorphous Ices

3.4. Ionic Solutions

3.4.1. The Dissimilar Pair, NaCl and KCl

3.4.1.1. Water Structure

3.4.1.2. Ion-Water Structure

3.4.1.3. Ion-Ion Structure

3.4.1.4. Discussion

3.4.2. Other Studies of Ions in Water

3.5. Microheterogeneity in Aqueous Mixtures

3.5.1. A Case Study of Alcohol:Water Mixtures

3.5.2. Other Studies

3.6. Water at Interfaces

3.6.1. MCM-41 Substrate

3.6.2. Scattering From MCM-41

3.6.3. Using the (100) to Characterize Water in Confinement

3.7. Toward Ever Greater Complexity—Some Concluding Remarks

References

Chapter 4: Ionic Liquids and Neutron Scattering

4.1. Introduction

4.2. Structure in Ionic Liquids Systems: Microscopic and Mesoscopic Correlations

4.2.1. Structure of Neat Compounds

4.2.2. Structure of Binary Mixtures Containing Ionic Liquids

4.2.3. Macromolecules and Other Large Scale Aggregates Dissolved in ILs

4.3. Relaxation Processes in Ionic Liquid Systems

4.4. Conclusion and Perspective

References

Chapter 5: Catalysis

5.1. Introduction—Why Neutrons for Catalysis?

5.2. Experimental

5.2.1. Design of Experiments

5.2.2. Sampling

5.2.3. Cell Design

5.2.4. Choice of Complementary Methods

5.2.5. Industrial Aspects

5.3. Production, Formation and Use of Catalysts

5.3.1. Catalyst Supports: Carbons

5.3.2. Catalyst Supports: Oxides

5.3.3. Fresh Catalysts: Water and OH-Groups

5.3.4. Pearlman's Catalyst

5.3.5. Catalyst Reduction Step

5.3.6. Used Catalysts: Preferential Adsorption

5.4. Hydrogenation Catalysts

5.4.1. Hydrogen in Supported Nano-Particles

5.4.1.1. The Lindlar Catalyst: Controlled Poisoning

5.4.1.2. Effects of Alloying on Hydrogen Storage and Catalytic Activity

5.4.2. Methyls on Pd: Catalyst Deactivation

5.4.3. Fuel Cell Catalysts

5.4.4. Hydrogenation of Nitriles with Raney® Metals

5.5. Catalysts for Commodity Chemicals

5.5.1. Methyl Chloride Synthesis

5.5.1.1. The Surface Acidity of ɳ-Alumina

5.5.1.2. The Interaction of Methanol on ɳ-Alumina

5.5.1.3. The Interaction of Hydrogen Chloride on ɳ-Alumina

5.5.1.4. Site-Selective Chemistry

5.5.2. Fischer-Tropsch Catalysis

5.5.3. Synthesis of Acrylics—Methyl Methacrylate

5.5.4. Methanol Synthesis

5.5.5. Ammonia Synthesis

5.5.6. Hydrogen Storage and Production via Oxyhydrides

5.6. Outlook: Experimental Limits and New Perspectives

5.6.1. Non-Hydrogenous Adsorbates

5.6.2. Operando Spectroscopy

5.6.3. Homogeneous Catalysis

5.6.4. Conclusions

References

Chapter 6: Sorbate Dynamics in Zeolite Catalysts

6.1. Introducing Zeolite Catalysts

6.2. Studying Dynamics in Zeolites

6.2.1. Studying Molecular Diffusion in Zeolites

6.2.2. Quantifying Translational Diffusion

6.2.2.1. Self-Diffusion - Isotropic and Jump Models

6.2.3. Localized Motions in Zeolites

6.2.3.1. Rotational Dynamics

6.2.3.2. Diffusion in a Confined Volume

6.3. Complementarity Between QENS and MD Simulations

6.3.1. Recent Improvements in MD Simulations

6.4. Hydrocarbon Behaviour in MFI Zeolites

6.4.1. n-Alkane Diffusion in Silicalite and Na-ZSM-5

6.4.2. Branched Alkane Diffusion in Silicalite and Na-ZSM-5

6.4.3. Localised Hydrocarbon Motions in ZSM-5: Benzene

6.5. Hydrocarbon Behaviour in the Faujasite Zeolites

6.5.1. Propane Dynamics in NaY

6.5.1.1. Propane Diffusion

6.5.1.2. Propane Rotation

6.5.2. Pentane Isomer Dynamics in NaY - The Levitation Effect

6.6. Dynamics of Methanol in Faujasite and MFI Zeolites

6.6.1. Localised Motions in ZSM-5

6.6.2. Methanol Diffusion in HY

6.7. Conclusion

Acknowledgments

References

Chapter 7: Atomic Quantum Dynamics in Materials Research

7.1. Aim and Scope

7.2. Conceptual Framework

7.2.1. Atoms Are Quantum Objects

7.2.2. Epithermal Neutrons Probe the Quantum Character of Atoms

7.2.3. Atoms and Their Local Chemical Environment

7.2.4. Link to Materials Modeling and Theory

7.3. Practice of Spectroscopy With Epithermal Neutrons

7.3.1. Anatomy of a Measurement

7.3.1.1. Momentum Transfer, Atomic Recoil, and Mass Selectivity

7.3.1.2. Basic Observables

7.3.1.3. From Momentum Space to Chemistry and Materials Science

7.3.2. VESUVIO Spectrometer

7.3.2.1. Accelerator-Driven Neutron Sources

7.3.2.2. Detection and Spectral Analysis of Epithermal Neutrons

7.3.2.3. Strategies for Data Collection and Analysis

7.4. Whetting Your Appetite for More: Case Studies

7.4.1. From Order to Disorder in Water

7.4.2. Molecular Intercalation in Nanostructured Media

7.4.3. Beyond Hydrogen: From Lithium to Dental Cements

7.4.3.1. Case of Lithium

7.4.3.2. Real-Life Materials

7.5. Perspectives and Outlook

7.5.1. Current Capabilities and Beyond

7.5.2. Tackling Disordered Systems

Funding

A.1. Position Uncertainty for a Particle in a Box

A.2. Hermite Polynomials

A.3. Position and Momentum Uncertainties for an Ensemble of Quantum Particles

Acknowledgments

References

Chapter 8: Soft Condensed Matter

8.1. Introduction

8.1.1. Soft Condensed Matter

8.1.2. Energy Related to Soft Matter

8.1.3. Energy Dispersion

8.1.4. Dynamics

8.2. Basic Theory of Neutron Scattering for Soft Condensed Matter

8.2.1. Scattering Vector and Scattering Intensity

8.2.2. Coherent Scattering and Incoherent Scattering

8.2.3. Elastic Scattering and Inelastic Scattering

8.2.4. Scattering Length Density

8.2.5. Scattering Length Density Distribution Function and Correlation Function

8.2.6. Transmission

8.2.7. Multiple Scattering and Background Scattering

8.3. Neutron Scattering Instruments and Methodologies

8.3.1. Small-Angle Neutron Scattering (SANS)

8.3.1.1. Form Factor and Guinier Law

8.3.1.2. Porod Law and Scattering Invariant

8.3.1.3. Ornstein-Zernike and Debye-Bueche Functions

8.3.1.4. Interparticle Interference and Structure Factor

8.3.1.5. Unified Exponential/Power-Law Approach

8.3.1.6. Contrast Variation

8.3.2. Neutron Reflectivity (NR)

8.3.3. Inelastic Neutron Scattering (INS)

8.3.3.1. Quasielastic Neutron Scattering (QENS)

8.3.3.2. Neutron Spin Echo (NSE)

8.4. Polymeric Systems

8.4.1. Polymer and Neutron Scattering

8.4.2. Scattering Functions of Polymeric Systems

8.4.2.1. Radius of Gyration and Debye Function

8.4.2.2. Regime I: Dilute Solutions

8.4.2.3. Regime II: Semidilute Solutions

8.4.2.4. Regime III: Concentrated Solutions and Polymer Blends

8.4.2.5. Block Copolymers in Bulk or Concentrated Systems

8.5. Rubbers and Gels

8.5.1. Scattering Functions of Polymer Gels: Effects of Cross-Linking

8.5.2. Charged Gels

8.5.3. Physical Gels

8.5.3.1. Amorphous Physical Gels and Gelators

8.5.3.2. Physical Gels by Crystallization

8.5.3.3. Physical Gels by Thawing

8.5.3.4. Physical Gels in Block Copolymer/Solvent Systems

8.6. Breakthrough Works in Polymer Sciences

8.6.1. Size of Polymer Chains

8.6.2. Critical Phenomena in Polymer Blends

8.6.3. Quantum-Phase Separation of Isotope Blends

8.6.4. Direct Observation of Reptation Motion of Molten Polymer by Spin Echo Spectroscopy

8.6.5. Order-Disorder Transition of Block Copolymer Thin Films

8.6.6. Volume Phase Transition of Polymer Gels

8.6.7. Contrast Variation SANS on Surfactant Effects of Block Copolymers

8.7. New Directions

8.7.1. Poloxamer

8.7.2. Kinetics of Amphiphilic Molecules in Lipid Vesicles

8.7.3. Shish-Kebab Structure

8.7.4. Structure Formation of Ion-Pair and Salt

8.7.5. Tough Polymer Gels

8.7.5.1. Contrast Variation of Nanocomposite Gels

8.7.5.2. Near Ideal Network Structure

8.8. Future Directions of Neutron Scattering in Soft Condensed Matter

8.8.1. High-Resolution/High-Brilliance SANS

8.8.2. Complementary SANS and SAXS

8.8.3. Computational-Science-Aided Neutron Scattering

8.8.3.1. Ab Initio Shape Determination by Bead Models

8.8.3.2. Reverse Monte Carlo Method

8.8.3.3. SANS

8.8.3.4. QENS

8.8.3.5. NR

8.8.3.6. NSE

8.8.4. High-Pressure Experiments

8.8.4.1. High-Pressure Cell

8.8.4.2. Pressure/Temperature-Induced Phase Separation of Polymer Solutions

8.8.4.3. Future Directions of High-Pressure Neutron Scattering

8.8.5. Rheo-SANS

8.8.5.1. Viscosity-Thickening of Wormlike Micelle Aqueous System

8.8.5.2. Rheo-Contrast Variation-SANS

8.8.5.3. Future Directions of Rheo-SANS

Appendix A. Scattering Functions of Spheres With Interparticle Interactions

A.1. Scattering Function of Isolated Spheres

A.2. Interparticle Interference

A.3. Debye Equation for Spherical Systems

A.4. Fournet Equation

A.5. Ornstein-Zernike Function

A.6. Percus-Yevick Equation

A.7. Modified Percus-Yevick Equation

A.8. Hayter-Penfold Equation

A.9. Freltoft-Kjems-Sinha Equation

Appendix B. Contrast Variation

B.1. Two-Component Systems

B.2. Multicomponent Systems

B.3. Contrast Matching Method

B.4. Contrast Variation Method

B.5. Physical Meaning of the Partial Structure Factor

References

Chapter 9: Ionic Conductors and Protonics

9.1. Solid-State Ionics

9.2. Proton Conductors

9.2.1. Proton Conducting Oxides/Perovskites

9.2.2. Mechanisms of Proton Diffusion

9.3. Oxide-Ion Conductors

9.3.1. Oxide-Ion Conducting Oxides

9.3.2. Mechanisms of Oxide-Ion Diffusion

9.4. Neutron Scattering

9.4.1. Role/Capacity of Neutron Scattering

9.4.2. Neutron Scattering and Computer Simulations

9.4.2.1. Structural Modeling Techniques

9.4.2.2. Modeling of Dynamics

9.5. Case Studies

9.5.1. Neutron Diffraction

9.5.1.1. Determination of Proton Sites and Concentration

9.5.1.2. Determination of Local Structural Properties

9.5.2. Neutron Reflectivity

9.5.2.1. Determination of the Structure and Proton Concentration Depth Profile in Thin Films

9.5.3. Inelastic Neutron Scattering

9.5.3.1. Investigation of Proton Local Environments

9.5.3.2. Investigation of Oxide-Ion Local Environments and Lattice Dynamics

9.5.4. Quasielastic Neutron Scattering

9.5.4.1. Investigations of Proton Dynamics in Proton Conducting Oxides

9.5.5. Case Studies on Other Structure Types

9.6. Perspectives

Abbreviations of Commonly Used Words in Alphabetical Order

References

Chapter 10: High-Temperature Levitated Materials

10.1. Introduction

10.2. Theoretical Background/Data Analysis

10.2.1. Structure (WANS)

10.2.1.1. Formalism

10.2.1.2. Data Analysis

10.2.2. Dynamics (QENS)

10.2.2.1. Formalism

10.2.2.2. Data Analysis

10.3. Neutron Scattering Instruments

10.3.1. For WANS Experiments

10.3.1.1. D20 (ILL)

10.3.1.2. D4c (ILL)

10.3.1.3. NOMAD (SNS)

10.3.2. For QENS Experiments

10.3.2.1. IN6 (ILL)

10.3.2.2. TOFTOF (FRM II)

10.4. Levitation Techniques

10.4.1. Aerodynamic Levitation (CNL)

10.4.1.1. Principle

10.4.1.2. Existing Setups

10.4.2. Electromagnetic Levitation (EML)

10.4.2.1. Principle

10.4.2.2. Existing Setups

10.4.3. Electrostatic Levitation (ESL)

10.4.3.1. Principle

10.4.3.2. Existing Setups

10.4.4. Temperature Measurements

10.5. Structural Investigations

10.5.1. Study of Metallic Melts

10.5.1.1. Experiments Using EML

10.5.1.2. Experiments Using ESL

10.5.1.3. Experiments Using CNL

10.5.2. Study of Oxide Melts

10.5.2.1. Experiments at D4

10.5.2.2. Experiments at SNS

10.6. Dynamical Investigations

10.6.1. Study of Metallic Melts Using EML

10.6.1.1. Monoatomic Liquids

10.6.1.2. Metallic Alloys

10.6.2. Study of Metallic Melts Using ESL

10.6.3. Experiments Using CNL

10.6.3.1. Study of Metallic Melts

10.6.3.2. Study of Oxide Melts

10.7. Conclusion and Perspectives

Acknowledgments

References

Chapter 11: High-Pressure Neutron Science

11.1. Introduction

11.2. High-Pressure Instrumentation

11.2.1. The Beginnings of High-Pressure Instrumentation

11.2.2. The Diamond Anvil Cell (DAC)

11.2.3. The Rise of Synchrotrons

11.2.4. Neutron Instrumentation at High Pressure

11.3. Data Reduction Considerations for High Pressure Cells

11.3.1. The Cell Background

11.3.2. Cell Attenuation

11.4. High-Pressure Neutron Facilities

11.4.1. Reactor Sources

11.4.2. Spallation Sources

11.4.3. The European Spallation Source

11.5. High-Pressure Neutron Science

11.5.1. Biological Systems

11.5.2. Chemistry and Materials Science

11.5.2.1. Light Elements and Superconductivity

11.5.2.2. New Carbon Architectures

11.6. Other Future Applications of High Pressure

11.7. Summary

Appendix A

References

Chapter 12: Engineering Applications

12.1. Introduction

12.2. Residual Stress Measurements

12.2.1. Principle of Strain Measurements

12.2.2. Enhanced Capability of Deep Penetration by Neutron Diffraction

12.2.3. Practical Issues in Neutron-Diffraction Measurements of Residual Stresses

12.2.4. Examples of Engineering Applications

12.2.4.1. Residual Stress Measurements of Thick Welds for Shipbuilding Applications

12.2.4.2. Residual Stress Measurements of Dissimilar Welds for Nuclear Plant Applications

12.2.4.3. In Situ Study of Stress and Microstructure Evolution in Friction Stir Welds

12.3. In-Situ Study of Deformation and Phase Transformation

12.3.1. Experimental Considerations

12.3.2. Case Studies

12.3.2.1. Deformation in Coarse Grained Materials

12.3.2.2. Deformation in Nanostructured Materials

12.3.2.3. Deformation in Amorphous Alloys

12.3.2.4. Insights From Peak Width Analysis

12.3.2.5. Functional Materials

12.3.2.6. Phase Transformation Kinetics

12.4. Small-Angle Neutron Scattering

12.4.1. Measurement Theory

12.4.2. Practical Aspects of Analysis in Metals and Alloys

12.4.3. Which Form Factor to Use?

12.4.4. Quantitative Evaluation of Volume Fraction—Importance of Scattering Length Density

12.4.5. Magnetic Scattering and "A" Value in Steel

12.4.6. Another Way to Use Different Contrast: Combination of SANS and SAXS

12.4.7. Further Expansion of SANS as a Daily Tool With a Compact Neutron Source

12.5. Summary and Outlook

Acknowledgments

References

Index

Back Cover

The users who browse this book also browse