Chapter
1.2.2. Neutron Fiber Diffraction
1.3. Small-Angle Neutron Scattering (SANS)
1.3.1. SANS Instrumentation
1.3.1.1. Currently Available Instruments
1.3.1.2. Future Instruments
1.3.2. Sample Preparation
1.3.3. Data Processing and Analysis
1.3.3.1. Model Independent Data Analysis
1.3.3.2. Geometric Modeling
1.3.3.3. Shape Reconstruction
1.3.3.4. Molecular Dynamics Simulations and Conformational Searches
1.4. Neutron Reflectometry
1.4.1. Specular and Off-Specular Reflection
1.4.2. Grazing-Incidence SANS (GISANS)
1.4.4. Experimental Considerations
1.4.4.2. Sample Preparation and Sample Environments
1.4.4.3. Contrast Variation
1.4.5. Data Analysis and Refinement
1.5. Membrane Diffraction
1.5.1. Instruments, Data Collection, and Analysis
1.5.2. Experimental Considerations
1.6. Deuterium Labeling for Biological Structure Determination
1.6.1. Protein Deuteration
1.6.2. Biopolymer Deuteration
1.6.3. Biomembrane and Small Molecule Deuteration
1.6.4. Current and Future Deuteration Facilities
1.6.4.1. D-Lab, ILL-EMBL, Grenoble (France)
1.6.4.2. Biodeuteration Lab (BDL), Oak Ridge National Laboratory, Oak Ridge TN (USA)
1.6.4.3. National Deuteration Facility, ANSTO, Sydney (Australia)
1.6.4.4. STFC Deuteration Facility, ISIS Neutron and Muon Facility, UK
1.6.4.5. Deuteration and Macromolecular Crystallization Platform, ESS, Lund (Sweden)
1.7. Scientific Highlights
1.7.1. Neutron Protein Crystallography
1.7.1.1. Ultra-High Resolution Neutron Studies of Crambin
1.7.1.2. Dynamic and Static Structural Studies of Amino Acid Protonation
1.7.1.3. Neutron Studies for Drug Design: HIV Protease in Complex With Amprenavir
1.7.1.4. Neutron Studies of an Engineered Photo-Switching Chromoprotein, Dathail
1.7.1.5. Cytochrome c Peroxidase
1.7.2. Fibre Biomaterials and Structural Biopolymers
1.7.3. Protein Solution Structures
1.7.4. Membrane Structures and Proteins in Membranes
1.7.5. Biomedical Applications and Biomaterials
Chapter 2: Dynamics of Biological Systems
2.2. Fundamental Aspects and Overview
2.2.1. Neutron Spectroscopy Fundamentals to Study Biological Systems
2.2.2. Disambiguation of Symbols
2.2.3. Collective and Self-Correlation Functions
2.2.4. Observable Quantities
2.2.5. Past and Present Topics in the Dynamics of Biological Systems
2.3. Concepts of Diffusion
2.3.1. Diffusion Fundamentals
2.3.2. Diffusion in Colloidal Suspensions
2.3.3. Diffusion in Confined Geometries
2.3.4. Fractional Generalization of the Diffusion Equation
2.4. Macromolecules in Aqueous Solutions
2.4.1. Center-of-Mass Diffusion
2.4.2. Internal Molecular Motions
2.5. Numerical Methods: Data Analysis
2.5.1. Reducing and Fitting Spectra
2.5.2. Modeling of the Solvent Water Contribution
2.5.3. Separation of the Rotational and Translational Diffusions
2.5.4. Molecular Dynamics Simulations
2.6. Spectrometers to Study Biological Dynamics
2.6.1. Types of Spectrometers for Biological Dynamics
2.6.2. Types of Measurements
2.6.3. Recent Advances in Neutron Optics
2.6.4. Practical Aspects of Experiments on Biological Samples
2.7. Neutron Spectroscopy in the Context of Complementary Methods
2.7.1. Dynamic Light Scattering (Visible and X-Ray Photons) and Other Photon Methods
2.7.2. Nuclear Magnetic Resonance
2.7.3. Fluorescence Correlation Spectroscopy
2.8.1. Proteins as Hydrated Powders
2.8.2. Proteins in Solution, Crowding, and Cluster Formation
2.8.4. Planar Lipid Membranes
Chapter 3: The Structure of Water and Aqueous Systems
3.1.1. Water Controversies
3.1.1.1. A "Theory" of Water?
3.1.1.2. Icebergs in Water
3.1.1.3. Water Chains and Rings
3.1.2. Water: The Role of Neutron Scattering
3.1.2.1. The Total Neutron Scattering Cross Section
3.1.2.2. First Order Difference Method
3.1.2.3. Second Order Difference Method
3.1.2.4. Inelastic and Quasielastic Scattering From Water
3.1.3. Scope of This Chapter: What Is Included and What Is Not Included
3.2. The Structure of a Liquid and How It Is Measured
3.2.1. The Structure of a Liquid
3.2.2. The Molecular Pair Correlation Function
3.2.3. The Neutron Total Scattering Experiment
3.2.3.1. Impact of Inelastic Scattering and How It Can Be Corrected
3.2.3.2. Fixed Wavevector Versus Time-of-Flight Options
3.2.3.3. Samples That Are Required or Desirable
3.2.3.4. Corrections That Are Needed to the Data
3.2.3.5. Comparison With Total X-Ray Scattering
3.2.4. How the Scattering Data Are Interpreted
3.2.4.1. Dealing With Underdetermined Scattering Matrices
3.2.4.2. Increasing Importance of X-Ray Scattering Data
3.2.4.3. When Is a Fit a Fit?
3.3. Pure Water Substance
3.3.1. A Case Study: Ambient Water
3.3.2. Beyond the Site-Site Radial Distribution Functions
3.3.2.1. Triangle Distribution Functions
3.3.2.2. The Spatial Density Function
3.3.2.3. Orientational Correlations
3.3.3. Water Structure: Effect of Temperature and Pressure
3.3.3.1. Effect of Temperature at Ambient Pressure
3.3.3.2. Effect of Increased Pressure
3.3.3.3. Spatial Structure of Ice Ih and the Amorphous Ices
3.4.1. The Dissimilar Pair, NaCl and KCl
3.4.1.2. Ion-Water Structure
3.4.1.3. Ion-Ion Structure
3.4.2. Other Studies of Ions in Water
3.5. Microheterogeneity in Aqueous Mixtures
3.5.1. A Case Study of Alcohol:Water Mixtures
3.6.2. Scattering From MCM-41
3.6.3. Using the (100) to Characterize Water in Confinement
3.7. Toward Ever Greater Complexity—Some Concluding Remarks
Chapter 4: Ionic Liquids and Neutron Scattering
4.2. Structure in Ionic Liquids Systems: Microscopic and Mesoscopic Correlations
4.2.1. Structure of Neat Compounds
4.2.2. Structure of Binary Mixtures Containing Ionic Liquids
4.2.3. Macromolecules and Other Large Scale Aggregates Dissolved in ILs
4.3. Relaxation Processes in Ionic Liquid Systems
4.4. Conclusion and Perspective
5.1. Introduction—Why Neutrons for Catalysis?
5.2.1. Design of Experiments
5.2.4. Choice of Complementary Methods
5.2.5. Industrial Aspects
5.3. Production, Formation and Use of Catalysts
5.3.1. Catalyst Supports: Carbons
5.3.2. Catalyst Supports: Oxides
5.3.3. Fresh Catalysts: Water and OH-Groups
5.3.4. Pearlman's Catalyst
5.3.5. Catalyst Reduction Step
5.3.6. Used Catalysts: Preferential Adsorption
5.4. Hydrogenation Catalysts
5.4.1. Hydrogen in Supported Nano-Particles
5.4.1.1. The Lindlar Catalyst: Controlled Poisoning
5.4.1.2. Effects of Alloying on Hydrogen Storage and Catalytic Activity
5.4.2. Methyls on Pd: Catalyst Deactivation
5.4.3. Fuel Cell Catalysts
5.4.4. Hydrogenation of Nitriles with Raney® Metals
5.5. Catalysts for Commodity Chemicals
5.5.1. Methyl Chloride Synthesis
5.5.1.1. The Surface Acidity of ɳ-Alumina
5.5.1.2. The Interaction of Methanol on ɳ-Alumina
5.5.1.3. The Interaction of Hydrogen Chloride on ɳ-Alumina
5.5.1.4. Site-Selective Chemistry
5.5.2. Fischer-Tropsch Catalysis
5.5.3. Synthesis of Acrylics—Methyl Methacrylate
5.5.4. Methanol Synthesis
5.5.6. Hydrogen Storage and Production via Oxyhydrides
5.6. Outlook: Experimental Limits and New Perspectives
5.6.1. Non-Hydrogenous Adsorbates
5.6.2. Operando Spectroscopy
5.6.3. Homogeneous Catalysis
Chapter 6: Sorbate Dynamics in Zeolite Catalysts
6.1. Introducing Zeolite Catalysts
6.2. Studying Dynamics in Zeolites
6.2.1. Studying Molecular Diffusion in Zeolites
6.2.2. Quantifying Translational Diffusion
6.2.2.1. Self-Diffusion - Isotropic and Jump Models
6.2.3. Localized Motions in Zeolites
6.2.3.1. Rotational Dynamics
6.2.3.2. Diffusion in a Confined Volume
6.3. Complementarity Between QENS and MD Simulations
6.3.1. Recent Improvements in MD Simulations
6.4. Hydrocarbon Behaviour in MFI Zeolites
6.4.1. n-Alkane Diffusion in Silicalite and Na-ZSM-5
6.4.2. Branched Alkane Diffusion in Silicalite and Na-ZSM-5
6.4.3. Localised Hydrocarbon Motions in ZSM-5: Benzene
6.5. Hydrocarbon Behaviour in the Faujasite Zeolites
6.5.1. Propane Dynamics in NaY
6.5.1.1. Propane Diffusion
6.5.1.2. Propane Rotation
6.5.2. Pentane Isomer Dynamics in NaY - The Levitation Effect
6.6. Dynamics of Methanol in Faujasite and MFI Zeolites
6.6.1. Localised Motions in ZSM-5
6.6.2. Methanol Diffusion in HY
Chapter 7: Atomic Quantum Dynamics in Materials Research
7.2. Conceptual Framework
7.2.1. Atoms Are Quantum Objects
7.2.2. Epithermal Neutrons Probe the Quantum Character of Atoms
7.2.3. Atoms and Their Local Chemical Environment
7.2.4. Link to Materials Modeling and Theory
7.3. Practice of Spectroscopy With Epithermal Neutrons
7.3.1. Anatomy of a Measurement
7.3.1.1. Momentum Transfer, Atomic Recoil, and Mass Selectivity
7.3.1.2. Basic Observables
7.3.1.3. From Momentum Space to Chemistry and Materials Science
7.3.2. VESUVIO Spectrometer
7.3.2.1. Accelerator-Driven Neutron Sources
7.3.2.2. Detection and Spectral Analysis of Epithermal Neutrons
7.3.2.3. Strategies for Data Collection and Analysis
7.4. Whetting Your Appetite for More: Case Studies
7.4.1. From Order to Disorder in Water
7.4.2. Molecular Intercalation in Nanostructured Media
7.4.3. Beyond Hydrogen: From Lithium to Dental Cements
7.4.3.2. Real-Life Materials
7.5. Perspectives and Outlook
7.5.1. Current Capabilities and Beyond
7.5.2. Tackling Disordered Systems
A.1. Position Uncertainty for a Particle in a Box
A.3. Position and Momentum Uncertainties for an Ensemble of Quantum Particles
Chapter 8: Soft Condensed Matter
8.1.1. Soft Condensed Matter
8.1.2. Energy Related to Soft Matter
8.2. Basic Theory of Neutron Scattering for Soft Condensed Matter
8.2.1. Scattering Vector and Scattering Intensity
8.2.2. Coherent Scattering and Incoherent Scattering
8.2.3. Elastic Scattering and Inelastic Scattering
8.2.4. Scattering Length Density
8.2.5. Scattering Length Density Distribution Function and Correlation Function
8.2.7. Multiple Scattering and Background Scattering
8.3. Neutron Scattering Instruments and Methodologies
8.3.1. Small-Angle Neutron Scattering (SANS)
8.3.1.1. Form Factor and Guinier Law
8.3.1.2. Porod Law and Scattering Invariant
8.3.1.3. Ornstein-Zernike and Debye-Bueche Functions
8.3.1.4. Interparticle Interference and Structure Factor
8.3.1.5. Unified Exponential/Power-Law Approach
8.3.1.6. Contrast Variation
8.3.2. Neutron Reflectivity (NR)
8.3.3. Inelastic Neutron Scattering (INS)
8.3.3.1. Quasielastic Neutron Scattering (QENS)
8.3.3.2. Neutron Spin Echo (NSE)
8.4.1. Polymer and Neutron Scattering
8.4.2. Scattering Functions of Polymeric Systems
8.4.2.1. Radius of Gyration and Debye Function
8.4.2.2. Regime I: Dilute Solutions
8.4.2.3. Regime II: Semidilute Solutions
8.4.2.4. Regime III: Concentrated Solutions and Polymer Blends
8.4.2.5. Block Copolymers in Bulk or Concentrated Systems
8.5.1. Scattering Functions of Polymer Gels: Effects of Cross-Linking
8.5.3.1. Amorphous Physical Gels and Gelators
8.5.3.2. Physical Gels by Crystallization
8.5.3.3. Physical Gels by Thawing
8.5.3.4. Physical Gels in Block Copolymer/Solvent Systems
8.6. Breakthrough Works in Polymer Sciences
8.6.1. Size of Polymer Chains
8.6.2. Critical Phenomena in Polymer Blends
8.6.3. Quantum-Phase Separation of Isotope Blends
8.6.4. Direct Observation of Reptation Motion of Molten Polymer by Spin Echo Spectroscopy
8.6.5. Order-Disorder Transition of Block Copolymer Thin Films
8.6.6. Volume Phase Transition of Polymer Gels
8.6.7. Contrast Variation SANS on Surfactant Effects of Block Copolymers
8.7.2. Kinetics of Amphiphilic Molecules in Lipid Vesicles
8.7.3. Shish-Kebab Structure
8.7.4. Structure Formation of Ion-Pair and Salt
8.7.5. Tough Polymer Gels
8.7.5.1. Contrast Variation of Nanocomposite Gels
8.7.5.2. Near Ideal Network Structure
8.8. Future Directions of Neutron Scattering in Soft Condensed Matter
8.8.1. High-Resolution/High-Brilliance SANS
8.8.2. Complementary SANS and SAXS
8.8.3. Computational-Science-Aided Neutron Scattering
8.8.3.1. Ab Initio Shape Determination by Bead Models
8.8.3.2. Reverse Monte Carlo Method
8.8.4. High-Pressure Experiments
8.8.4.1. High-Pressure Cell
8.8.4.2. Pressure/Temperature-Induced Phase Separation of Polymer Solutions
8.8.4.3. Future Directions of High-Pressure Neutron Scattering
8.8.5.1. Viscosity-Thickening of Wormlike Micelle Aqueous System
8.8.5.2. Rheo-Contrast Variation-SANS
8.8.5.3. Future Directions of Rheo-SANS
Appendix A. Scattering Functions of Spheres With Interparticle Interactions
A.1. Scattering Function of Isolated Spheres
A.2. Interparticle Interference
A.3. Debye Equation for Spherical Systems
A.5. Ornstein-Zernike Function
A.6. Percus-Yevick Equation
A.7. Modified Percus-Yevick Equation
A.8. Hayter-Penfold Equation
A.9. Freltoft-Kjems-Sinha Equation
Appendix B. Contrast Variation
B.1. Two-Component Systems
B.2. Multicomponent Systems
B.3. Contrast Matching Method
B.4. Contrast Variation Method
B.5. Physical Meaning of the Partial Structure Factor
Chapter 9: Ionic Conductors and Protonics
9.2.1. Proton Conducting Oxides/Perovskites
9.2.2. Mechanisms of Proton Diffusion
9.3. Oxide-Ion Conductors
9.3.1. Oxide-Ion Conducting Oxides
9.3.2. Mechanisms of Oxide-Ion Diffusion
9.4.1. Role/Capacity of Neutron Scattering
9.4.2. Neutron Scattering and Computer Simulations
9.4.2.1. Structural Modeling Techniques
9.4.2.2. Modeling of Dynamics
9.5.1. Neutron Diffraction
9.5.1.1. Determination of Proton Sites and Concentration
9.5.1.2. Determination of Local Structural Properties
9.5.2. Neutron Reflectivity
9.5.2.1. Determination of the Structure and Proton Concentration Depth Profile in Thin Films
9.5.3. Inelastic Neutron Scattering
9.5.3.1. Investigation of Proton Local Environments
9.5.3.2. Investigation of Oxide-Ion Local Environments and Lattice Dynamics
9.5.4. Quasielastic Neutron Scattering
9.5.4.1. Investigations of Proton Dynamics in Proton Conducting Oxides
9.5.5. Case Studies on Other Structure Types
Abbreviations of Commonly Used Words in Alphabetical Order
Chapter 10: High-Temperature Levitated Materials
10.2. Theoretical Background/Data Analysis
10.3. Neutron Scattering Instruments
10.3.1. For WANS Experiments
10.3.2. For QENS Experiments
10.3.2.2. TOFTOF (FRM II)
10.4. Levitation Techniques
10.4.1. Aerodynamic Levitation (CNL)
10.4.1.2. Existing Setups
10.4.2. Electromagnetic Levitation (EML)
10.4.2.2. Existing Setups
10.4.3. Electrostatic Levitation (ESL)
10.4.3.2. Existing Setups
10.4.4. Temperature Measurements
10.5. Structural Investigations
10.5.1. Study of Metallic Melts
10.5.1.1. Experiments Using EML
10.5.1.2. Experiments Using ESL
10.5.1.3. Experiments Using CNL
10.5.2. Study of Oxide Melts
10.5.2.1. Experiments at D4
10.5.2.2. Experiments at SNS
10.6. Dynamical Investigations
10.6.1. Study of Metallic Melts Using EML
10.6.1.1. Monoatomic Liquids
10.6.1.2. Metallic Alloys
10.6.2. Study of Metallic Melts Using ESL
10.6.3. Experiments Using CNL
10.6.3.1. Study of Metallic Melts
10.6.3.2. Study of Oxide Melts
10.7. Conclusion and Perspectives
Chapter 11: High-Pressure Neutron Science
11.2. High-Pressure Instrumentation
11.2.1. The Beginnings of High-Pressure Instrumentation
11.2.2. The Diamond Anvil Cell (DAC)
11.2.3. The Rise of Synchrotrons
11.2.4. Neutron Instrumentation at High Pressure
11.3. Data Reduction Considerations for High Pressure Cells
11.3.1. The Cell Background
11.4. High-Pressure Neutron Facilities
11.4.2. Spallation Sources
11.4.3. The European Spallation Source
11.5. High-Pressure Neutron Science
11.5.1. Biological Systems
11.5.2. Chemistry and Materials Science
11.5.2.1. Light Elements and Superconductivity
11.5.2.2. New Carbon Architectures
11.6. Other Future Applications of High Pressure
Chapter 12: Engineering Applications
12.2. Residual Stress Measurements
12.2.1. Principle of Strain Measurements
12.2.2. Enhanced Capability of Deep Penetration by Neutron Diffraction
12.2.3. Practical Issues in Neutron-Diffraction Measurements of Residual Stresses
12.2.4. Examples of Engineering Applications
12.2.4.1. Residual Stress Measurements of Thick Welds for Shipbuilding Applications
12.2.4.2. Residual Stress Measurements of Dissimilar Welds for Nuclear Plant Applications
12.2.4.3. In Situ Study of Stress and Microstructure Evolution in Friction Stir Welds
12.3. In-Situ Study of Deformation and Phase Transformation
12.3.1. Experimental Considerations
12.3.2.1. Deformation in Coarse Grained Materials
12.3.2.2. Deformation in Nanostructured Materials
12.3.2.3. Deformation in Amorphous Alloys
12.3.2.4. Insights From Peak Width Analysis
12.3.2.5. Functional Materials
12.3.2.6. Phase Transformation Kinetics
12.4. Small-Angle Neutron Scattering
12.4.1. Measurement Theory
12.4.2. Practical Aspects of Analysis in Metals and Alloys
12.4.3. Which Form Factor to Use?
12.4.4. Quantitative Evaluation of Volume Fraction—Importance of Scattering Length Density
12.4.5. Magnetic Scattering and "A" Value in Steel
12.4.6. Another Way to Use Different Contrast: Combination of SANS and SAXS
12.4.7. Further Expansion of SANS as a Daily Tool With a Compact Neutron Source
12.5. Summary and Outlook